Câu hỏi:

07/10/2025 344 Lưu

Một bể chứa dầu ban đầu có \(50000\) lít dầu. Gọi \(V\left( t \right)\) là thể tích dầu (lít) trong bể tại thời điểm \(t\), trong đó \(t\) tính theo giờ \(0 \le t \le 24\). Trong quá trình bơm dầu vào bể, thể tích dầu tăng theo tốc độ được biểu diễn bởi hàm số \(V'\left( t \right) = k.\sqrt t \), với \(k\) là hằng số dương. Sau 4 giờ bơm liên tục, thể tích dầu trong bể đạt \(58000\) lít.

a) Hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k.\sqrt t \).

b) \(V\left( t \right) = \frac{{2k}}{3}.t\sqrt t  + C\), với \(0 \le t \le 24\) và \(k,\,\,C\) là các hằng số.

c) Sau 16 giờ bơm liên tục, thể tích dầu trong bể đạt được \(148000\) lít.

d) Trong quá trình bơm dầu, nếu sau mỗi giờ lượng dầu bị rò rỉ đều đặn với tốc độ \(500\) lít/giờ, thì tại thời điểm \(t\) bằng 9 giờ, thể tích dầu trong bể là \(72.500\) lít.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} } \).

Vậy hàm số \(V\left( t \right)\) là một nguyên hàm của hàm số \(f\left( t \right) = k.\sqrt t \).

b) Đúng. Ta có \(V\left( t \right) = \int {V'\left( t \right){\rm{d}}t = \int {k.\sqrt t {\rm{d}}t} }  = \frac{{2k}}{3}.t\sqrt t  + C\), với \(0 \le t \le 24\) và \(k,\,\,C\) là các hằng số.

c) Sai. Do ban đầu bể chứa dầu ban đầu có \(50000\) lít dầu nên \(V\left( 0 \right) = 50\,000 \Rightarrow C = 50\,000\).

Mặt khác sau 4 giờ bơm liên tục, thể tích dầu trong bể đạt \(58000\) lít nên ta có:

\(V\left( 4 \right) = \frac{{2k}}{3}.4\sqrt 4  + 50000 = 58000 \Leftrightarrow k = 1500\).

Vậy \(V\left( t \right) = 1\,000.t\sqrt t  + 50\,000\).

Sau 16 giờ bơm liên tục, thể tích dầu trong bể đạt được:

\(V\left( {16} \right) = 1\,000.16\sqrt 6  + 50\,000 = 114\,000\) lít.

d) Đúng. Trong quá trình bơm dầu, nếu sau mỗi giờ lượng dầu bị rò rỉ đều đặn với tốc độ \(500\) lít/giờ, thì tại thời điểm \(t\) bằng 9 giờ, thể tích dầu trong bể là

\(V\left( 9 \right) = 1\,000.9\sqrt 9  + 50\,000 - 500.9 = 72\,500\) lít.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} - \int\limits_a^c {f\left( x \right){\rm{d}}x} \).    
B. \(S = - \int\limits_0^a {f\left( x \right){\rm{d}}x} \).
C. \(S = - \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).   
D. \(S = \int\limits_0^c {f\left( x \right){\rm{d}}x} + \int\limits_a^c {f\left( x \right){\rm{d}}x} \).

Lời giải

Chọn A

Diện tích hình phẳng: \[S = \int\limits_0^a {\left| {f\left( x \right)} \right|{\rm{d}}x}  = \int\limits_0^c {\left| {f\left( x \right)} \right|{\rm{d}}x}  + \int\limits_c^a {\left| {f\left( x \right)} \right|{\rm{d}}x}  = \int\limits_0^c {f\left( x \right){\rm{d}}x}  - \int\limits_a^c {f\left( x \right){\rm{d}}x} \].

Câu 2

A. \(f\left( 2 \right) = - 4\).                                
B. \(f\left( 2 \right) = - 2\).                
C. \(f\left( 2 \right) = 4\).                                   
D. \(f\left( 2 \right) = - 3\).

Lời giải

Chọn B

Khối tròn xoay được tạo thành khi quay hình phẳng \(\left( H \right)\) quanh trục \[Ox\] có thể tích là

\(V = \pi \int\limits_1^3 {{{\left( {{x^2} - 4x} \right)}^2}} {\rm{d}}x = \frac{{406}}{{15}}\pi \).

Câu 4

A. \(\int {2025\sin x\,{\rm{d}}x} = \sin 2025x + C\).                                  
B. \(\int {2025\sin x\,{\rm{d}}x} = {\sin ^{2025}}x + C\).    
C. \(\int {2025\sin x\,{\rm{d}}x} = - 2025\cos x + C\).                                  
D. \(\int {2025\sin x\,{\rm{d}}x} = 2025\cos x + C\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(V = \frac{{406}}{{15}}\).                              
B. \(V = \frac{{406}}{{15}}\pi \). 
C. \(V = \frac{{22}}{3}\pi \).                                     
D. \(V = \frac{{512}}{{15}}\pi \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP