Người ta chế tác một giọt nước bằng thủy tinh. Biết giọt nước thủy tinh này là vật thể tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\sqrt {4 - {x^2}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { - 2 \le x \le 0,6} \right)\\ - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}\,\,\,\,\left( {0,6 < x \le 4,6} \right)\end{array} \right.\] và trục \[Ox\] quanh trục \[Ox\] (đơn vị trên trục là centimet).

a) Hàm số \[y = f\left( x \right)\] liên tục tại \[x = 0,6\].
b) Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.
c) Thể tích của giọt nước thủy tinh này lớn hơn 40 cm3.
d) Biết khối lượng riêng của thủy tinh là \[\rho = 2,6\] g/cm3, khối lượng của giọt nước thủy tinh này là 102,22 g (làm tròn kết quả đến hàng phần trăm).
Người ta chế tác một giọt nước bằng thủy tinh. Biết giọt nước thủy tinh này là vật thể tròn xoay khi xoay hình phẳng giới hạn bởi đồ thị của hàm số \[f\left( x \right) = \left\{ \begin{array}{l}\sqrt {4 - {x^2}} \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( { - 2 \le x \le 0,6} \right)\\ - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}\,\,\,\,\left( {0,6 < x \le 4,6} \right)\end{array} \right.\] và trục \[Ox\] quanh trục \[Ox\] (đơn vị trên trục là centimet).
a) Hàm số \[y = f\left( x \right)\] liên tục tại \[x = 0,6\].
b) Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.
c) Thể tích của giọt nước thủy tinh này lớn hơn 40 cm3.
d) Biết khối lượng riêng của thủy tinh là \[\rho = 2,6\] g/cm3, khối lượng của giọt nước thủy tinh này là 102,22 g (làm tròn kết quả đến hàng phần trăm).
Quảng cáo
Trả lời:

a) Đúng. \(\mathop {\lim }\limits_{x \to 0,{6^ - }} f\left( x \right) = \sqrt {4 - {{\left( {0,6} \right)}^2}} = \sqrt {4 - 0,36} = \sqrt {3,64} \approx 1,907\);
\(\mathop {\lim }\limits_{x \to 0,{6^ + }} f\left( x \right) = - \frac{{\sqrt {91} }}{{20}}.0,6 + \frac{{23\sqrt {91} }}{{100}} \approx 1,907\).
Vậy hàm số \(y = f\left( x \right)\) liên tục tại \(x = 0,6\).
b) Đúng. Diện tích mặt cắt của giọt nước thủy tinh khi cắt bởi mặt phẳng qua trục được tính bởi công thức \[S = 2\int\limits_{ - 2}^{4,6} {f\left( x \right){\rm{d}}x} \] cm2.
c) Sai. Thể tích của giọt nước thủy tinh này là:
\[V = {V_1} + {V_2} = \pi \int\limits_{ - 2}^{0,6} {{{\left( {\sqrt {4 - {x^2}} } \right)}^2}{\rm{d}}x + } \,\pi \int\limits_{0,6}^{4,6} {{{\left( { - \frac{{\sqrt {91} }}{{20}}x + \frac{{23\sqrt {91} }}{{100}}} \right)}^2}{\rm{d}}x} = \frac{{4693\pi }}{{375}} \approx 39,32\] cm3.
d) Đúng. Khối lượng của giọt nước thủy tinh này là: \(m = \rho .V = 2,6.\frac{{4693\pi }}{{375}} \approx 102,22\)g.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):
d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
a) Sai. Chi phí mua 1 sản phẩm ứng với \(x = 0\), sau ra \(C = 5000.25 = 125\,000\) (đồng).
b) Đúng. Với \(x = 1\) ta có: \(C = 5000\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 137\,000\) (đồng).
Suy ra chi phí bảo trì năm đầu tiên của sản phẩm là \(137\,000 - 125\,000 = 12\,000\) (đồng).
c) Sai. Gọi \(x\)là số năm mà số tiền bảo trì bằng số tiền mua sản phẩm. Khi đó tổng số tiền mua và số tiền bảo trì là \(2 \cdot 125\,000 = 250\,000\).
\(5000\left( {25 + 3\int\limits_0^x {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 250\,000 \Leftrightarrow 25 + 3\left( {\frac{4}{5}{t^{\frac{5}{4}}}|_0^x} \right) = 50 \Leftrightarrow \frac{{12}}{5}{x^{\frac{5}{4}}} = 25 \Leftrightarrow x = {\left( {\frac{{75}}{2}} \right)^{\frac{4}{5}}} \approx 6,52\) năm.
d) Sai. Số tiền mua và bảo trì 1 sản phẩm trong 10 năm là:
\(C = 5000\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 5000\left( {25 + 24\sqrt[4]{{10}}} \right) \approx 338\,393,53\) (đồng).
Ta có: \(\frac{{10\,000\,000}}{{338\,393,53}} \approx 29,55\).
Vậy với 10 triệu đồng thì họ có thể mua và bảo trì tối đa 29 sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.