Câu hỏi:

07/10/2025 71 Lưu

Dạng 3. Trắc nghiệm trả lời ngắn

Một bác thợ xây bơm nước vào bể chứa nước. Gọi \(h\left( t \right)\) là thể tích nước bơm được sau \(t\) giây. Cho \(h'\left( t \right) = 6a{t^2} + 2bt\) và ban đầu bể không có nước. Sau 3 giây thì thể tích nước trong bể là \(90{\rm{\;}}{{\rm{m}}^3}\) và sau 6 giây thì thể tích nước trong bể là \(504{\rm{\;}}{{\rm{m}}^3}\). Tính thể tích nước trong bể sau khi bơm được 9 giây (đơn vị: m3).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Từ giả thiết suy ra \(h\left( t \right) = \int {\left( {6a{t^2} + 2bt} \right){\rm{d}}x}  = 2a{t^3} + b{t^2} + c\).

Lại có \(h\left( 0 \right) = 0;h\left( 3 \right) = 90;h\left( 6 \right) = 504\) nên suy ra \(\left\{ {\begin{array}{*{20}{l}}{c = 0}\\{54a + 9b = 90}\\{432a + 36b = 504}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}\begin{array}{l}a = \frac{2}{3}\\b = 6\end{array}\\{c = 0}\end{array}} \right.\).

Vậy \(h\left( t \right) = \frac{4}{3}{t^3} + 6{t^2} \Rightarrow h\left( 9 \right) = 1458{\rm{\;}}{{\rm{m}}^3}\).

Đáp án: 1458.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t}  = \frac{{{t^3}}}{3} - 4{t^2} + C\).

b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).

Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.

c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

Trong thí nghiệm nuôi cấy một loại vi sinh vật, kí hiệu \(f\left( t \right)\) là tổng số lượng vi sinh vật sau \(t\) giờ. Biết rằng sau 3 giờ đầu tiên thì tổng số lượng v (ảnh 1)

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).

Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).

Lời giải

a) Đúng. \[h\left( t \right) = \int {v\left( t \right){\rm{d}}t}  = \int {\left( { - 0,8t + 4,16} \right){\rm{d}}t}  =  - 0,4{t^2} + 4,16t + C\].

Mà \[h\left( 0 \right) = 2,2\] nên \[C = 2,2\] nên \[h\left( t \right) =  - 0,4{t^2} + 4,16t + 2,2\,\left( {\rm{m}} \right)\].

b) Đúng. Quả cầu đạt độ cao cao nhất tại thời điểm \[t =  - \frac{{4,16}}{{2.\left( { - 0,4} \right)}} = 5,2\,\left( {\rm{s}} \right)\].

c) Đúng. Độ cao cao nhất của quả cầu bằng \[h\left( {5,2} \right) = 13,016\,\,\left( {\rm{m}} \right)\].

d) Sai. Quả cầu chạm đất khi \[h\left( t \right) = 0 \Leftrightarrow  - \,0,4\,{t^2} + 4,16t + \,2,2 = 0\, \Leftrightarrow \left[ \begin{array}{l}t \approx 10,9\\t \approx  - 0,5\,\end{array} \right.\].

Vì \[t > 0\] nên chọn \[t \approx 10,9\,\left( {\rm{s}} \right)\].

Câu 6

A. \(V = \frac{{12\pi }}{5}.\)                               
B. \(V = \frac{{12}}{5}\).              
C. \(V = \frac{{\sqrt 3 \pi }}{{12}}.\)                        
D. \(V = \frac{{\sqrt 3 }}{{12}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP