Tốc độ \(v\left( {{\rm{\;km}}/{\rm{ph\'u t}}} \right)\) của một ca nô cao tốc thay đổi theo thời gian \(t\) (phút) như đồ thị ở hình vẽ sau:

Tính tốc độ trung bình của ca nô trong khoảng thời gian 20 phút đầu tiên (đơn vị: km/phút).
Tốc độ \(v\left( {{\rm{\;km}}/{\rm{ph\'u t}}} \right)\) của một ca nô cao tốc thay đổi theo thời gian \(t\) (phút) như đồ thị ở hình vẽ sau:

Quảng cáo
Trả lời:
Từ đồ thị, ta có tốc độ của ca nô được tính theo công thức: \(v\left( t \right) = \left\{ \begin{array}{l}\,\,\,\,\,\,\,0,6t\,\,{\rm{khi}}\,\,0 \le t < 2\\\,\,\,\,\,\,\,\,\,1,2\,\,{\rm{khi}}\,\,2 \le t < 16\\6 - 0,3t\,\,{\rm{khi}}\,\,16 \le t \le 20\end{array} \right.\).
Quãng đường ca nô di chuyển được trong 20 phút đầu tiên là
\(s = \int\limits_0^2 {0,6t{\rm{d}}t} + \int\limits_2^{16} {1,2{\rm{d}}t} + \int\limits_{16}^{20} {\left( {6 - 0,3t} \right){\rm{d}}t} \) \( = \frac{6}{5} + \frac{{84}}{5} + \frac{{12}}{5} = \frac{{102}}{5}\) (km).
Tốc độ trung bình của ca nô trong 20 phút đầu tiên là \({v_{tb}} = \frac{s}{{20}} = \frac{{102}}{{100}} = 1,02\) (km/phút).
Đáp án: 1,02.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
a) Đúng. \[h\left( t \right) = \int {v\left( t \right){\rm{d}}t} = \int {\left( { - 0,8t + 4,16} \right){\rm{d}}t} = - 0,4{t^2} + 4,16t + C\].
Mà \[h\left( 0 \right) = 2,2\] nên \[C = 2,2\] nên \[h\left( t \right) = - 0,4{t^2} + 4,16t + 2,2\,\left( {\rm{m}} \right)\].
b) Đúng. Quả cầu đạt độ cao cao nhất tại thời điểm \[t = - \frac{{4,16}}{{2.\left( { - 0,4} \right)}} = 5,2\,\left( {\rm{s}} \right)\].
c) Đúng. Độ cao cao nhất của quả cầu bằng \[h\left( {5,2} \right) = 13,016\,\,\left( {\rm{m}} \right)\].
d) Sai. Quả cầu chạm đất khi \[h\left( t \right) = 0 \Leftrightarrow - \,0,4\,{t^2} + 4,16t + \,2,2 = 0\, \Leftrightarrow \left[ \begin{array}{l}t \approx 10,9\\t \approx - 0,5\,\end{array} \right.\].
Vì \[t > 0\] nên chọn \[t \approx 10,9\,\left( {\rm{s}} \right)\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


