Một viên gạch hoa hình vuông cạnh 60 cm. Người thiết kế đã sử dụng bốn đường parabol có chung đỉnh tại tâm viên gạch để tạo ra bốn cánh hoa (được tô màu sẫm như hình vẽ bên).
Tính diện tích phần cánh hoa của viên gạch (đơn vị: cm2).

Quảng cáo
Trả lời:
Chọn hệ tọa độ như hình vẽ (1 đơn vị trên trục bằng \(10\,{\rm{cm}} = 1\,{\rm{dm}}\)), các cánh hoa tạo bởi các đường parabol có phương trình \(y = \frac{{{x^2}}}{3}\), \(y = - \frac{{{x^2}}}{3}\),\(x = - \frac{{{y^2}}}{3}\),\(x = \frac{{{y^2}}}{3}\).
Diện tích một cánh hoa (nằm trong góc phần tư thứ nhất) bằng diện tích hình phẳng giới hạn bởi hai đồ thị hàm số\(y = \frac{{{x^2}}}{3}\),\(y = \sqrt {3x} \) và hai đường thẳng \(x = 0;x = 3\).
Do đó diện tích một cánh hoa bằng: \(\int\limits_0^3 {\left( {\sqrt {3x} - \frac{{{x^2}}}{3}} \right){\rm{d}}x} \) \[ = 3\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right) = 300\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\].
Đáp án: 300.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Sai. Ta có: \(\int {\left( {{t^2} - 8t} \right){\rm{d}}t} = \frac{{{t^3}}}{3} - 4{t^2} + C\).
b) Sai. Ta có: \(f'\left( t \right) > 0\,\,\)khi \(8 < t < 10\) và \(f'\left( t \right) < 0\,\,\)khi \(3 < t < 8\).
Nên số lượng vi sinh vật giảm trong khoảng từ 3 giờ đến 8 giờ, sau đó tăng dần trong khoảng 8 giờ đến 10 giờ.
c) Đúng. Bảng biến thiên của \(f\left( t \right)\):

d) Đúng. \(f\left( t \right) = \frac{{{t^3}}}{3} - 4{t^2} + C\). Do \(f\left( 3 \right) = 50 \Rightarrow \frac{{{3^3}}}{3} - {4.3^2} + C = 50 \Rightarrow C = 77\).
Suy ra \(f\left( t \right) = \frac{1}{3}{t^3} - 4{t^2} + 77 \Rightarrow f\left( 6 \right) = 5\).
Lời giải
a) Sai. Chi phí mua 1 sản phẩm ứng với \(x = 0\), sau ra \(C = 5000.25 = 125\,000\) (đồng).
b) Đúng. Với \(x = 1\) ta có: \(C = 5000\left( {25 + 3\int\limits_0^1 {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 137\,000\) (đồng).
Suy ra chi phí bảo trì năm đầu tiên của sản phẩm là \(137\,000 - 125\,000 = 12\,000\) (đồng).
c) Sai. Gọi \(x\)là số năm mà số tiền bảo trì bằng số tiền mua sản phẩm. Khi đó tổng số tiền mua và số tiền bảo trì là \(2 \cdot 125\,000 = 250\,000\).
\(5000\left( {25 + 3\int\limits_0^x {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 250\,000 \Leftrightarrow 25 + 3\left( {\frac{4}{5}{t^{\frac{5}{4}}}|_0^x} \right) = 50 \Leftrightarrow \frac{{12}}{5}{x^{\frac{5}{4}}} = 25 \Leftrightarrow x = {\left( {\frac{{75}}{2}} \right)^{\frac{4}{5}}} \approx 6,52\) năm.
d) Sai. Số tiền mua và bảo trì 1 sản phẩm trong 10 năm là:
\(C = 5000\left( {25 + 3\int\limits_0^{10} {{t^{\frac{1}{4}}}{\rm{d}}t} } \right) = 5000\left( {25 + 24\sqrt[4]{{10}}} \right) \approx 338\,393,53\) (đồng).
Ta có: \(\frac{{10\,000\,000}}{{338\,393,53}} \approx 29,55\).
Vậy với 10 triệu đồng thì họ có thể mua và bảo trì tối đa 29 sản phẩm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


![Chất điểm chuyển động theo quy luật vận tốc \[v\left( t \right)\left( {{\rm{m/s}}} \right)\] có dạng đường thẳng khi \[0 \le t \le 3\left( {\rm{s}} \right)\] và \[8 \le t \le 15\left( {\rm{s}} \right)\] và \[v\left( t \rig (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/6-1759409201.png)