Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng \[d:\frac{{x - 1}}{4} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 7}}\]. Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\] và vuông góc với đường thẳng d là
Quảng cáo
Trả lời:

Chọn C
Vì mặt phẳng vuông góc với đường thẳng d nên \[\overrightarrow n = \overrightarrow u = \left( {4;3; - 7} \right)\].
Phương trình mặt phẳng đi qua \[A\left( {1;2;3} \right)\] và có vectơ pháp tuyến \[\overrightarrow n = \left( {4;3; - 7} \right)\].
\[4\left( {x - 1} \right) + 3\left( {y - 2} \right) - 7\left( {z - 3} \right) = 0\]\[ \Leftrightarrow 4x + 3y - 7z + 11 = 0\].
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\left| {\overrightarrow {{v_1}} } \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5\), \(\left| {\overrightarrow {{v_2}} } \right| = \sqrt {{5^2} + {{12}^2} + {0^2}} = 13\), \(\left| {\overrightarrow u } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {0^2} + {4^2}} = 5\).
Vận tốc thực tế của máy bay Su-30 là \(\overrightarrow {{V_1}} = \frac{{900}}{{\left| {\overrightarrow {{v_1}} } \right|}}\overrightarrow {{v_1}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {492;720;64} \right)\).
Phương trình chuyển động của máy bay Su-30 là: \(\left\{ \begin{array}{l}x = 492t\\y = 35 + 720t\\z = 10 + 64t\end{array} \right.\).
Vận tốc thực tế của máy bay MiG-31 là \(\overrightarrow {{V_2}} = \frac{{910}}{{\left| {\overrightarrow {{v_2}} } \right|}}\overrightarrow {{v_2}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {302;840;64} \right)\).
Phương trình chuyển động của máy bay MiG-31 là: \(\left\{ \begin{array}{l}x = 31 + 302t\\y = 10 + 840t\\z = 11 + 64t\end{array} \right.\).
Khu vực không phận bị hạn chế là \(\left\{ \begin{array}{l}{\left( {x - 178} \right)^2} + {\left( {y - 430} \right)^2} \le 49\\0 \le z \le 43\end{array} \right.\).
Máy bay MiG-31 bay vào không phận bị hạn chế khi
\(\left\{ \begin{array}{l}{\left( {31 + 302t - 178} \right)^2} + {\left( {10 + 840t - 430} \right)^2} \le 49\\0 \le 11 + 64t \le 43\end{array} \right.\)\( \Leftrightarrow 0,4918 \le t \le \frac{1}{2}\).
Do đó, thời điểm máy bay MiG-31 bay ra khỏi khu vực không phận bị hạn chế là \(t = 0,5\) (giờ).
Khi đó, vị trí của hai máy bay Su-30 và MiG-31 là \(A\left( {246;395;42} \right)\) và \(B\left( {182;430;43} \right)\).
Khoảng cách giữa chúng là \(AB \approx 73\) (km).
Đáp án: 73.
Lời giải
a) Sai. Vectơ vận tốc là \(\overrightarrow v = \frac{{\overrightarrow {AB} }}{t} = \left( { - 4; - 1,5; - 0,5} \right)\).
b) Đúng. Đường thẳng \(AB\) đi qua \(A\left( {320;148;45} \right)\) và có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - 40; - 15; - 5} \right)\)nên ta có phương trình đường thẳng là \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Đúng. Phương trình chuyển động tại thời điểm \(t\) giây là \(\left\{ \begin{array}{l}x = 320 - 4t\\y = 148 - 1,5t\\z = 45 - 0,5t\end{array} \right.\).
Vật chạm đất tức là \(z\left( t \right) = 0 \Leftrightarrow 45 - 0,5t = 0 \Leftrightarrow t = 90\).
d) Sai. Radar phát hiện khi \(r\left( t \right) = \sqrt {{{\left( {380 - 4t} \right)}^2} + {{\left( {148 - 1,5t} \right)}^2} + \left( {45 - 0,5{t^2}} \right)} = 400\).
Giải phương trình ta được \(t \approx 0,11\).
Khi đó cao độ của vật là \(z\left( {0,11} \right) = 45 - 0,5.0,11 = 44,945 \approx 44,95\).
Câu 3
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.