Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian tọa độ Oxyz với mặt phẳng \[\left( {Oxy} \right)\] trùng với mặt đất với đơn vị trên mỗi trục là km, một hệ thống phòng không được đặt tại \(O\). Hệ thống phòng không được trạng bị Radar có thể phát hiện vật thể lạ trong phạm vị \(400\,{\rm{km}}\). Một vật thể (coi như một hạt) bay với tốc độ không đổi trên một đường thẳng, người quan sát Radar phát hiện vật thể di chuyển từ \(A\left( {320;148;45} \right)\) đến \(B\left( {280;133;40} \right)\) trong khoảng thời gian \(10\) giây.
a) Vectơ dịch chuyển của vật thể trên mỗi đơn vị thời gian được gọi là vectơ vận tốc của vật thể. Khi đó vectơ vận tốc của vật thể có tọa độ \(\overrightarrow v = \left( {4;1,5;0,5} \right)\) (đơn vị giây).
b) Đường thẳng \(AB\) có phương trình \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Khoảng thời gian từ khi vật thể ở A đến khi rơi xuống mặt đất là \(90\) giây.
d) Vị trí đầu tiên vật thể đi vào vùng quan sát của Radar có cao độ bằng \(48,25\)(kết quả làm tròn đến hàng phần trăm).
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Trong không gian tọa độ Oxyz với mặt phẳng \[\left( {Oxy} \right)\] trùng với mặt đất với đơn vị trên mỗi trục là km, một hệ thống phòng không được đặt tại \(O\). Hệ thống phòng không được trạng bị Radar có thể phát hiện vật thể lạ trong phạm vị \(400\,{\rm{km}}\). Một vật thể (coi như một hạt) bay với tốc độ không đổi trên một đường thẳng, người quan sát Radar phát hiện vật thể di chuyển từ \(A\left( {320;148;45} \right)\) đến \(B\left( {280;133;40} \right)\) trong khoảng thời gian \(10\) giây.
a) Vectơ dịch chuyển của vật thể trên mỗi đơn vị thời gian được gọi là vectơ vận tốc của vật thể. Khi đó vectơ vận tốc của vật thể có tọa độ \(\overrightarrow v = \left( {4;1,5;0,5} \right)\) (đơn vị giây).
b) Đường thẳng \(AB\) có phương trình \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Khoảng thời gian từ khi vật thể ở A đến khi rơi xuống mặt đất là \(90\) giây.
d) Vị trí đầu tiên vật thể đi vào vùng quan sát của Radar có cao độ bằng \(48,25\)(kết quả làm tròn đến hàng phần trăm).
Quảng cáo
Trả lời:

a) Sai. Vectơ vận tốc là \(\overrightarrow v = \frac{{\overrightarrow {AB} }}{t} = \left( { - 4; - 1,5; - 0,5} \right)\).
b) Đúng. Đường thẳng \(AB\) đi qua \(A\left( {320;148;45} \right)\) và có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - 40; - 15; - 5} \right)\)nên ta có phương trình đường thẳng là \(\left\{ \begin{array}{l}x = 320 - 40t\\y = 148 - 15t\\z = 45 - 5t\end{array} \right.\).
c) Đúng. Phương trình chuyển động tại thời điểm \(t\) giây là \(\left\{ \begin{array}{l}x = 320 - 4t\\y = 148 - 1,5t\\z = 45 - 0,5t\end{array} \right.\).
Vật chạm đất tức là \(z\left( t \right) = 0 \Leftrightarrow 45 - 0,5t = 0 \Leftrightarrow t = 90\).
d) Sai. Radar phát hiện khi \(r\left( t \right) = \sqrt {{{\left( {380 - 4t} \right)}^2} + {{\left( {148 - 1,5t} \right)}^2} + \left( {45 - 0,5{t^2}} \right)} = 400\).
Giải phương trình ta được \(t \approx 0,11\).
Khi đó cao độ của vật là \(z\left( {0,11} \right) = 45 - 0,5.0,11 = 44,945 \approx 44,95\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\left| {\overrightarrow {{v_1}} } \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5\), \(\left| {\overrightarrow {{v_2}} } \right| = \sqrt {{5^2} + {{12}^2} + {0^2}} = 13\), \(\left| {\overrightarrow u } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {0^2} + {4^2}} = 5\).
Vận tốc thực tế của máy bay Su-30 là \(\overrightarrow {{V_1}} = \frac{{900}}{{\left| {\overrightarrow {{v_1}} } \right|}}\overrightarrow {{v_1}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {492;720;64} \right)\).
Phương trình chuyển động của máy bay Su-30 là: \(\left\{ \begin{array}{l}x = 492t\\y = 35 + 720t\\z = 10 + 64t\end{array} \right.\).
Vận tốc thực tế của máy bay MiG-31 là \(\overrightarrow {{V_2}} = \frac{{910}}{{\left| {\overrightarrow {{v_2}} } \right|}}\overrightarrow {{v_2}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {302;840;64} \right)\).
Phương trình chuyển động của máy bay MiG-31 là: \(\left\{ \begin{array}{l}x = 31 + 302t\\y = 10 + 840t\\z = 11 + 64t\end{array} \right.\).
Khu vực không phận bị hạn chế là \(\left\{ \begin{array}{l}{\left( {x - 178} \right)^2} + {\left( {y - 430} \right)^2} \le 49\\0 \le z \le 43\end{array} \right.\).
Máy bay MiG-31 bay vào không phận bị hạn chế khi
\(\left\{ \begin{array}{l}{\left( {31 + 302t - 178} \right)^2} + {\left( {10 + 840t - 430} \right)^2} \le 49\\0 \le 11 + 64t \le 43\end{array} \right.\)\( \Leftrightarrow 0,4918 \le t \le \frac{1}{2}\).
Do đó, thời điểm máy bay MiG-31 bay ra khỏi khu vực không phận bị hạn chế là \(t = 0,5\) (giờ).
Khi đó, vị trí của hai máy bay Su-30 và MiG-31 là \(A\left( {246;395;42} \right)\) và \(B\left( {182;430;43} \right)\).
Khoảng cách giữa chúng là \(AB \approx 73\) (km).
Đáp án: 73.
Câu 2
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Lời giải
a) Đúng. Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Sai. Ta có: \(IM = \sqrt {{{\left( { - 1 + 1} \right)}^2} + {{\left( { - 3 + 2} \right)}^2} + {{\left( { - 2 + 3} \right)}^2}} = \sqrt 2 \).
c) Đúng. Ta có \(IM = \sqrt 2 \) và mặt cầu \(\left( S \right)\) có bán kính \(R = \sqrt {14} \)\( \Rightarrow IM < R\).
Vậy điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Sai. Do điểm \(M\) nằm trong mặt cầu \(\left( S \right)\) nên mặt phẳng \(\left( P \right)\) đi qua \(M\) luôn cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn.
Gọi \(H\) là tâm của đường tròn giao tuyến \( \Rightarrow IH \bot \left( P \right)\), do đó bán kính đường tròn giao tuyến là \(r = \sqrt {{R^2} - I{H^2}} = \sqrt {14 - I{H^2}} \). Suy ra bán kính \(r\) nhỏ nhất khi \(IH\) lớn nhất.
Ta có: \(IH \le IM \Leftrightarrow IH \le \sqrt 2 \, \Rightarrow \max IH = \sqrt 2 \) khi \(M\) trùng \(H\), khi đó \(IM \bot \left( P \right)\).
Mặt phẳng \(\left( P \right)\) đi qua \(M\) và có vectơ pháp tuyến \(\overrightarrow {IM} = \left( {0;\, - 1;\,1} \right)\).
Vậy phương trình mặt phẳng \(\left( P \right)\) là \(0.\left( {x + 1} \right) - \left( {y + 3} \right) + \left( {z + 2} \right) = 0 \Leftrightarrow y - z + 1 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.