Đề kiểm tra Toán 12 Chân trời sáng tạo Chương 5 có đáp án - Đề 2
24 người thi tuần này 4.6 150 lượt thi 11 câu hỏi 45 phút
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
🔥 Đề thi HOT:
135 câu Bài tập Hình học mặt nón, mặt trụ, mặt cầu cực hay có lời giải (P1)
20 câu Trắc nghiệm Phương trình đường thẳng trong không gian có đáp án (Nhận biết)
5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án (Phần 1)
7 câu Trắc nghiệm Khối đa diện lồi và khối đa diện đều có đáp án (Vận dụng)
62 câu Trắc nghiệm Khái niệm về khối đa diện (nhận biết)
Đề ôn luyện Toán Chương 8. Một số yếu tố thống kê, xác suất và lý thuyết đồ thị (đề số 3)
237 câu Bài tập Hàm số mũ, logarit ôn thi Đại học có lời giải (P1)
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Chọn D
Phương trình mặt phẳng \[3x + y - 7z - 3 = 0\] có một vectơ pháp tuyến là \[\overrightarrow n = \left( {3;1; - 7} \right)\].
Câu 2
Lời giải
Chọn A
Thay tọa độ của điểm \(M\left( {3;4; - 5} \right)\) vào phương trình đường thẳng \(d\) ta có \(\frac{{3 - 3}}{2} = \frac{{4 - 4}}{{ - 5}} = \frac{{ - 5 + 5}}{3}.\)
Do đó \(M \in d\).
Câu 3
Lời giải
Chọn B
Vì mặt cầu \(\left( S \right)\) có tâm \(A\left( {2;1;0} \right)\), đi qua điểm \(B\left( {0;1;2} \right)\) nên mặt cầu \(\left( S \right)\) có tâm \(A\left( {2;1;0} \right)\) và có bán kính \(R = AB\).
Ta có: \(\overrightarrow {AB} \left( { - 2;0;2} \right)\). Suy ra \(R = \left| {\overrightarrow {AB} } \right| = 2\sqrt 2 \).
Vậy \(\left( S \right):{\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 8\).
Câu 4
Lời giải
Chọn A
Từ phương trình \[\frac{{x + 1}}{{ - 2}} = \frac{{2 - y}}{3} = \frac{z}{2} \Leftrightarrow \frac{{x + 1}}{{ - 2}} = \frac{{y - 2}}{{ - 3}} = \frac{z}{2}\], khi đó một vectơ chỉ phương của đường thẳng \[\left( d \right)\] là \[\overrightarrow u = \left( { - 2; - 3;2} \right)\].
Câu 5
Lời giải
Chọn C
Vectơ chỉ phương của đường thẳng \(AB\) là \(\overrightarrow u = \overrightarrow {AB} = \left( {1; - 5;1} \right)\).
Phương trình đường thẳng \(AB\) là \(\frac{{x - 2}}{1} = \frac{{y + 2}}{{ - 5}} = \frac{{z + 1}}{1}\).
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 8
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
