Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian Oxyz, mặt phẳng nào dưới đây nhận \[\overrightarrow n = \left( {3;1; - 7} \right)\] là một vectơ pháp tuyến?
Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian Oxyz, mặt phẳng nào dưới đây nhận \[\overrightarrow n = \left( {3;1; - 7} \right)\] là một vectơ pháp tuyến?Quảng cáo
Trả lời:
Chọn D
Phương trình mặt phẳng \[3x + y - 7z - 3 = 0\] có một vectơ pháp tuyến là \[\overrightarrow n = \left( {3;1; - 7} \right)\].
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(\left| {\overrightarrow {{v_1}} } \right| = \sqrt {{3^2} + {4^2} + {0^2}} = 5\), \(\left| {\overrightarrow {{v_2}} } \right| = \sqrt {{5^2} + {{12}^2} + {0^2}} = 13\), \(\left| {\overrightarrow u } \right| = \sqrt {{{\left( { - 3} \right)}^2} + {0^2} + {4^2}} = 5\).
Vận tốc thực tế của máy bay Su-30 là \(\overrightarrow {{V_1}} = \frac{{900}}{{\left| {\overrightarrow {{v_1}} } \right|}}\overrightarrow {{v_1}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {492;720;64} \right)\).
Phương trình chuyển động của máy bay Su-30 là: \(\left\{ \begin{array}{l}x = 492t\\y = 35 + 720t\\z = 10 + 64t\end{array} \right.\).
Vận tốc thực tế của máy bay MiG-31 là \(\overrightarrow {{V_2}} = \frac{{910}}{{\left| {\overrightarrow {{v_2}} } \right|}}\overrightarrow {{v_2}} + \frac{{80}}{{\left| {\overrightarrow u } \right|}}\overrightarrow u \) \( = \left( {302;840;64} \right)\).
Phương trình chuyển động của máy bay MiG-31 là: \(\left\{ \begin{array}{l}x = 31 + 302t\\y = 10 + 840t\\z = 11 + 64t\end{array} \right.\).
Khu vực không phận bị hạn chế là \(\left\{ \begin{array}{l}{\left( {x - 178} \right)^2} + {\left( {y - 430} \right)^2} \le 49\\0 \le z \le 43\end{array} \right.\).
Máy bay MiG-31 bay vào không phận bị hạn chế khi
\(\left\{ \begin{array}{l}{\left( {31 + 302t - 178} \right)^2} + {\left( {10 + 840t - 430} \right)^2} \le 49\\0 \le 11 + 64t \le 43\end{array} \right.\)\( \Leftrightarrow 0,4918 \le t \le \frac{1}{2}\).
Do đó, thời điểm máy bay MiG-31 bay ra khỏi khu vực không phận bị hạn chế là \(t = 0,5\) (giờ).
Khi đó, vị trí của hai máy bay Su-30 và MiG-31 là \(A\left( {246;395;42} \right)\) và \(B\left( {182;430;43} \right)\).
Khoảng cách giữa chúng là \(AB \approx 73\) (km).
Đáp án: 73.
Lời giải

\(\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 4; - 2;4} \right) = - 2\left( {2;1; - 2} \right)\\\overrightarrow {{n_P}} = \left( {2;1; - 2} \right)\end{array} \right.\)\( \Rightarrow \overrightarrow {AB} ,\;\overrightarrow {{n_P}} \) cùng phương nên \(\overrightarrow {AB} \bot \left( P \right)\), \(AB = 6\).
\(d\left( {A,\;\left( P \right)} \right) = \frac{{\left| {2.3 + 5 - 2.\left( { - 2} \right) + 9} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = 8\) và \(d\left( {B,\;\left( P \right)} \right) = \frac{{\left| {2.\left( { - 1} \right) + 3 - 2.2 + 9} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = 2\).
\(AB \cap \left( P \right) = M \Rightarrow M\) cố định.
Do \(\left( P \right)\) tiếp xúc với mặt cầu \(\left( S \right)\) tại \(C\) nên \(MC \bot IC\) tại \(C\).
\( \Rightarrow MA.MB = M{C^2}\), ta có: \(\left\{ \begin{array}{l}MA = d\left( {A;\;\left( P \right)} \right) = 8\\MB = d\left( {B;\left( P \right)} \right) = 2\end{array} \right. \Leftrightarrow M{C^2} = 16 \Leftrightarrow MC = 4\).
\( \Rightarrow C\) thuộc đường tròn tâm \(M\) bán kính \(r = MC = 4\).
Ta có: \(AB:\left\{ \begin{array}{l}x = 3 + 2t\\y = 5 + t\\z = - 2 - 2t\end{array} \right.\), \(M = AB \cap \left( P \right) \Rightarrow M\left( { - \frac{7}{3};\frac{7}{3};\frac{{10}}{3}} \right)\).
Gọi \(H\) là hình chiếu của \(O\) lên mặt phẳng \(\left( P \right)\) \( \Rightarrow d\left( {O\left( P \right)} \right) = 3\), \(OH:\left\{ \begin{array}{l}x = 2t\\y = t\\z = - 2t\end{array} \right.\).
\(H = OH \cap \left( P \right)\)\( \Leftrightarrow H\left( { - 2;\; - 1;\;2} \right)\), \(HM = \sqrt {13} < 4\) nên \(H\) nằm trong đường tròn tâm \(M\) bán kính \(r = MC = 4\). Suy ra \(OC = \sqrt {O{H^2} + H{C^2}} = \sqrt {9 + H{C^2}} \).
\( \Rightarrow OC\) đạt min hoặc max \( \Leftrightarrow HC\) đạt min hoặc max
\(\left\{ \begin{array}{l}H{C_{\min }} = \left| {HM - r} \right| = 4 - \sqrt {13} \\H{C_{\max }} = HM + r = 4 + \sqrt {13} \end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}O{C_{\min }} = \sqrt {9 + \left( {4 - {{\sqrt {13} }^2}} \right)} = {m_2}\\O{C_{\max }} = \sqrt {9 + {{\left( {4 + \sqrt {13} } \right)}^2}} = {m_1}\end{array} \right.\).
Vậy \({m_1}^2 + {m_2}^2 = 76\).
Đáp án: 76.
Câu 3
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Trong không gian Oxyz, cho mặt cầu \(\left( S \right)\) có phương trình \({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 14\) và điểm \(M\left( { - 1;\, - 3;\, - 2} \right)\).
a) Mặt cầu \(\left( S \right)\) có tâm là \(I\left( { - 1;\, - 2;\, - 3} \right)\).
b) Khoảng cách từ tâm \(I\) đến điểm \(M\) là \(IM = 2\).
c) Điểm \(M\) nằm trong mặt cầu \(\left( S \right)\).
d) Gọi \(\left( P \right)\) là mặt phẳng đi qua \(M\) và cắt mặt cầu \(\left( S \right)\) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Khi đó phương trình mặt phẳng \(\left( P \right)\) là \(y - z + 5 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
