Câu hỏi:

07/10/2025 373 Lưu

Một công ty bất động sản đấu giá quyền sử dụng hai mảnh đất độc lập. Khả năng trúng đấu giá cao nhất của mảnh đất số 1 là \(0,7\) và mảnh đất số 2 là \(0,8.\) Xác suất để công ty trúng giá cao nhất mảnh đất số 2, biết công ty trúng giá cao nhất mảnh đất số 1 là

A. \(0,8.\)                        
B. \(0,7.\)                      
C. \(0,75.\)                           
D. \(0,6.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Gọi \(A\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 1”;

Gọi \(B\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 2”.

Gọi \(C\) là biến cố: “Công ty trúng giá cao nhất mảnh đất số 2, biết công ty trúng giá cao nhất mảnh đất số 1” \( \Rightarrow P\left( C \right) = P\left( {B|A} \right) = P\left( B \right) = 0,8.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi:

Biến cố \[A\]: Kinh tế suy thoái.

Biến cố \[B\]: Trái phiếu có lợi nhuận cao.

Biến cố \[\overline A \]: Kinh tế tăng trưởng.

Ta có \[P\left( A \right) = 0,4\](Kinh tế suy thoái);

\[P\left( {B|A} \right) = 0,7\] (Trong khi kinh tế suy thoái, xác suất trái phiếu lợi nhuận cao);

\[P\left( {\overline A } \right) = 0,6\] (Kinh tế tăng trưởng);

\[P\left( {B|\overline A } \right) = 0,3\] (Trong khi kinh tế tăng trưởng, xác suất trái phiếu lợi nhuận cao).

Khi đó \[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,3 = 0,46\].

Áp dụng định lý Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,4}}{{0,46}} \approx 0,61\].

Đáp án: 0,61.

Lời giải

Gọi \(A,B,C\) lần lượt là biến cố thí sinh được chọn lọt vào Vòng sơ khảo, Vòng bán kết và Vòng chung kết.

a) Đúng. Vì có \(50{\rm{\% }}\) thí \({\rm{sinh}}\) lọt vào vòng sơ khảo nên \(P\left( A \right) = 0,5\).

b) Sai. Xác suất để thí sinh lọt vào Vòng bán kết là

\({\rm{\;}}P\left( B \right) = P\left( {AB} \right) = P\left( {B\mid A} \right)P\left( A \right) = 0,3 \cdot 0,5 = 0,15\).

c) Đúng. Xác suất để thí sinh lọt vào Vòng chung kết là

\(P\left( C \right) = P\left( {ABC} \right) = P\left( {C\mid AB} \right)P\left( {AB} \right) = 0,2.0,15 = 0,03\).

d) Sai. Ta có \(P\left( {\overline C \mid A} \right) = 1 - P\left( {C\mid A} \right) = 1 - \frac{{P\left( C \right)}}{{P\left( A \right)}} = 0,94\).

\[P\left( {A\mid \overline C } \right) = \frac{{P\left( {\overline C \mid A} \right)P\left( A \right)}}{{P\left( {\overline C } \right)}} = \frac{{0,94.0,5}}{{1 - 0,03}} = \frac{{47}}{{97}} = 0,485 < 0,49\].