Câu hỏi:

07/10/2025 3 Lưu

Một nhà đầu tư đang xem xét đầu tư vào hai loại tài sản: Cổ phiếu và trái phiếu. Qua nghiên cứu thị trường có hai kịch bản sau có thể xảy ra:

Kịch bản Kinh tế tăng trưởng: Xác suất xảy ra kịch bản kinh tế tăng trưởng trong năm tới là \[60\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[80\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[30\% \].

Kịch bản Kinh tế suy thoái: Xác suất xảy ra kịch bản kinh tế suy thoái trong năm tới là \[40\% \]. Trong kịch bản này, xác suất cổ phiếu mang lại lợi nhuận cao là \[10\% \], và xác suất trái phiếu mang lại lợi nhuận cao là \[70\% \].

Vào cuối năm, nhà đầu tư nhận thấy rằng trái phiếu đã mang lại lợi nhuận cao. Tính xác suất để kịch bản kinh tế trong năm đó là suy thoái (làm tròn kết quả đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi:

Biến cố \[A\]: Kinh tế suy thoái.

Biến cố \[B\]: Trái phiếu có lợi nhuận cao.

Biến cố \[\overline A \]: Kinh tế tăng trưởng.

Ta có \[P\left( A \right) = 0,4\](Kinh tế suy thoái);

\[P\left( {B|A} \right) = 0,7\] (Trong khi kinh tế suy thoái, xác suất trái phiếu lợi nhuận cao);

\[P\left( {\overline A } \right) = 0,6\] (Kinh tế tăng trưởng);

\[P\left( {B|\overline A } \right) = 0,3\] (Trong khi kinh tế tăng trưởng, xác suất trái phiếu lợi nhuận cao).

Khi đó \[P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = 0,4.0,7 + 0,6.0,3 = 0,46\].

Áp dụng định lý Bayes: \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,7.0,4}}{{0,46}} \approx 0,61\].

Đáp án: 0,61.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(P\left( {\overline A |B} \right) = 0,5\).        
B. \(P\left( {\overline A |B} \right) = 0,6\).                           
C. \(P\left( {\overline A |B} \right) = 0,3\).                           
D. \(P\left( {\overline A |B} \right) = 0,4\).

Lời giải

Chọn C

Với mọi biến cố \(A\) và \(B\), \(P\left( B \right) > 0\) ta có \(P\left( {\overline A |B} \right) = 1 - P\left( {A|B} \right) = 1 - 0,7 = 0,3\).

Câu 2

A. \(0,46\).                      
B. \(0,34\).                    
C. \(0,15\).                           
D. \(0,31\).

Lời giải

Chọn A

Ta có: \[P\left( B \right) = 1 - P\left( {\overline B } \right) = 0,8\].

Theo công thức xác suất toàn phần, ta có:

\[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,8.0,5 + 0,2.0,3 = 0,46\].

Câu 3

A. \(0,1875\).                  
B. \(0,48\).                    
C. \(0,333\).                         
D. \(0,95\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[0,25\].                      
B. \[\frac{{56}}{{65}}\].      
C. \[0,65\].                    
D. \[0,5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP