Câu hỏi:

08/10/2025 24 Lưu

Cho hàm số có bảng biến thiên như sau:

Shape1

Hàm số đạt cực đại tại điểm nào trong các điểm sau đây?

\(x = 3\).

\[x = - 2\].

\(x = 4\).

\(x = - 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Theo bảng biến thiên, dấu của đạo hàm đổi từ dương (+) sang âm (−) khi \(x\) đi qua \({x_0} = - 1\) nên hàm số đạt cực đại tại \(x = - 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

Đồ thị hàm số \[f\left( x \right) = 5x - 1 + \frac{8}{{x - 1}}\] có tiệm cận đứng là \(x = 1\) và tiệm cận xiên \(y = 5x - 1\).

Do đó, tâm đối xứng của đồ thị hàm số là \(I\left( {1;4} \right)\).

Ta có \[a = 1\], \[b = 4\]. Vậy \[C = a + 3b = 13\].

Đáp án: 13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP