Câu hỏi:

08/10/2025 19 Lưu

Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ { - 4;2} \right]\) và có đồ thị như hình vẽ.

index_html_4d2d654a2febd3a9.png

Khi đó \(\mathop {\max }\limits_{\left[ { - 4; - 1} \right]} f\left( x \right) + \mathop {\min }\limits_{\left[ { - 4;2} \right]} f\left( x \right)\) bằng

\(1\).

\(0\).

\(2\).

\(5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Dựa vào đồ thị ta thấy \(\mathop {\max }\limits_{\left[ { - 4; - 1} \right]} f\left( x \right) = 2\) và \(\mathop {\min }\limits_{\left[ { - 4;2} \right]} f\left( x \right) = - 2\)\( \Rightarrow \)\(\mathop {\max }\limits_{\left[ { - 4; - 1} \right]} f\left( x \right) + \mathop {\min }\limits_{\left[ { - 4;2} \right]} f\left( x \right) = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:

\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).

Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).

\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).

Bảng biến thiên:

index_html_2eece90a4b27b6ab.png

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.

Đáp án: 1200.

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).