Câu hỏi:

08/10/2025 9 Lưu

Giá trị lớn nhất của hàm số \(y = \frac{{3x - 1}}{{x - 3}}\) trên đoạn \(\left[ {0;2} \right]\) là

\(5\).

\(\frac{1}{3}\).

\( - \frac{1}{3}\).

\( - 5\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Tập xác định\(\mathbb{R}\backslash \left\{ 3 \right\}\).

\(y = \frac{{3{\rm{x}} - 1}}{{x - 3}} \Rightarrow y' = \frac{{ - 8}}{{{{\left( {x - 3} \right)}^2}}}\), hàm số nghịch biến trên các khoảng xác định.

Do đó \(\mathop {\max }\limits_{\left[ {0;2} \right]} y = y\left( 0 \right) = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:

\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).

Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).

\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).

Bảng biến thiên:

index_html_2eece90a4b27b6ab.png

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.

Đáp án: 1200.

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).