Câu hỏi:

08/10/2025 14 Lưu

Cho hàm số \[y = f\left( x \right)\] xác định trên tập \[\mathbb{R}\backslash \left\{ { - 1} \right\}\], liên tục trên các khoảng xác định và có bảng biến thiên như hình vẽ.

index_html_41d80358cda89a3b.png

Trong các mệnh đề sau, mệnh đề nào đúng?

Đường thẳng \[x = 0\] và \[x = - 1\] là tiệm cận đứng của đồ thị hàm số.

Đồ thị hàm số không có tiệm cận đứng.

Đồ thị hàm số có duy nhất đường tiệm cận đứng là \[x = 0\].

Đồ thị hàm số có duy nhất đường tiệm cận đứng là \[x = - 1\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Dựa vào BBT ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = - \infty \) và \[\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = + \infty \] nên \[x = - 1\] là đường tiệm cận đứng của đồ thị hàm số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:

\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).

Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).

\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).

Bảng biến thiên:

index_html_2eece90a4b27b6ab.png

Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.

Đáp án: 1200.

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).