Bác Lâm muốn gò một cái thùng bằng tôn dạng hình hộp chữ nhật không nắp có đáy là hình vuông và đựng đầy được 32 lít nước. Gọi độ dài cạnh đáy của thùng là \(x\left( {{\rm{dm}}} \right)\), chiều cao của thùng là \(h\left( {{\rm{dm}}} \right)\).
(a) Thể tích của thùng là \(V = {x^2} \cdot h\,\,\left( {{\rm{d}}{{\rm{m}}^3}} \right)\).
(b) Tổng diện tích xung quanh và diện tích đáy của thùng là: \(S = 4xh + {x^2}\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right)\).
(c) Đạo hàm của hàm số \(S\left( x \right) = \frac{{128}}{x} + {x^2}\) là \(S'\left( x \right) = \frac{{128}}{{{x^2}}} + 2x\).
(d) Để làm được cái thùng mà tốn ít nguyên liệu nhất thì độ dài cạnh đáy của thùng là 4 dm.
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

a) Đúng. Thể tích của thùng: \(V = x.x.h = {x^2}h\,\,\left( {{\rm{d}}{{\rm{m}}^{\rm{3}}}} \right)\).
b) Đúng. Tổng diện tích xung quanh và diện tích đáy là:
S = 4 ∙ Diện tích một mặt bên + Diện tích đáy
\( = 4.h.x + x.x = 4hx + {x^2}{\rm{\;}}\left( {{\rm{d}}{{\rm{m}}^{\rm{2}}}} \right)\).
c) Sai. Ta có: \(V = 32 = {x^2}h \Leftrightarrow h = \frac{{32}}{{{x^2}}}\).
Do đó \(S\left( x \right) = 4hx + {x^2} = 4.\frac{{32}}{{{x^2}}}.x + {x^2} = \frac{{128}}{x} + {x^2}\).
Suy ra \(S'\left( x \right) = - \frac{{128}}{{{x^2}}} + 2x\).
d) Đúng. Để làm được cái thùng ít tốn nguyên liệu nhất thì \(S\left( x \right)\) đạt giá trị nhỏ nhất.
Ta có \(S'\left( x \right) = 0 \Leftrightarrow - \frac{{128}}{{{x^2}}} + 2x = 0 \Leftrightarrow - 128 + 2{x^3} = 0 \Leftrightarrow x = 4\).
Bảng biến thiên:

\(S\left( x \right)\) đạt giá trị nhỏ nhất khi \(x = 4\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
Đồ thị hàm số \[f\left( x \right) = 5x - 1 + \frac{8}{{x - 1}}\] có tiệm cận đứng là \(x = 1\) và tiệm cận xiên \(y = 5x - 1\).
Do đó, tâm đối xứng của đồ thị hàm số là \(I\left( {1;4} \right)\).
Ta có \[a = 1\], \[b = 4\]. Vậy \[C = a + 3b = 13\].
Đáp án: 13.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



