Câu hỏi:

08/10/2025 56 Lưu

Một tấm kẽm hình vuông \(ABCD\) có cạnh bằng \(30\;{\rm{cm}}\). Người ta gập tấm kẽm theo hai cạnh \[EF\] và \(GH\) cho đến khi \(AD\) và \(BC\) trùng nhau như hình vẽ bên để được một hình lăng trụ khuyết hai đáy.

index_html_c5c870b2293a6d37.png

(a) Thể tích khối trụ được tính bằng công thức \(V = 30S\) trong đó \(S\) là diện tích của tam giác \(AEG\).

(b) Diện tích của tam giác \(AEG\) bằng: \(\sqrt {30} .\sqrt {{{\left( {15 - x} \right)}^2}\left( {2x - 15} \right)} \).

(c) Giá trị của \(x\) để thể tích khối lăng trụ lớn nhất là \(x = 10\left( {{\rm{cm}}} \right)\).

(d) Thể tích khối lăng trụ lớn nhất bằng \(1250\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Picture 1

a) Đúng. Đường cao lăng trụ là \(AD = AB = 30{\rm{cm}}\) không đổi. Để thể tích lăng trụ lớn nhất chỉ cần diện tích đáy lớn nhất.

Gọi \(I\) là trung điểm cạnh \(EG\)\( \Rightarrow AI \bot EG\) trong tam giác \[AEG\]\( \Rightarrow IG = 15 - x,\)\(\left( {0 < x < 15} \right)\).

Ta có:\[AI = \sqrt {{x^2} - {{\left( {\frac{{30 - 2x}}{2}} \right)}^2}} = \sqrt {{x^2} - {{\left( {15 - x} \right)}^2}} \]\[ = \sqrt {30x - 225} ,\,x \in \left( {\frac{{15}}{2};15} \right)\].

b) Sai.\[{S_{\Delta AEG}} = \frac{1}{2}AI.EG = \frac{1}{2}\left( {30 - 2x} \right)\sqrt {30x - 225} \]\( = \sqrt {15} .\sqrt {{{\left( {15 - x} \right)}^2}\left( {2x - 15} \right)} \).

Vậy ta cần tìm \(x \in \left( {\frac{{15}}{2};15} \right)\) để \(f\left( x \right) = {\left( {15 - x} \right)^2}\left( {2x - 15} \right)\) lớn nhất.

\(f'\left( x \right) = - 2\left( {15 - x} \right)\left( {2x - 15} \right) + 2{\left( {15 - x} \right)^2} = 2\left( {15 - x} \right)\left( {30 - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 15\\x = 10\end{array} \right.\).

Bảng biến thiên:

index_html_c5a310a336b30733.png

c) Đúng. Vậy thể tích lăng trụ lớn nhất khi \(x = 10\).

d) Sai. Thể tích lớn nhất của lăng trụ bằng \[125.30 = 3750\,\left( {{\rm{c}}{{\rm{m}}^{\rm{3}}}} \right)\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

Đồ thị hàm số \[f\left( x \right) = 5x - 1 + \frac{8}{{x - 1}}\] có tiệm cận đứng là \(x = 1\) và tiệm cận xiên \(y = 5x - 1\).

Do đó, tâm đối xứng của đồ thị hàm số là \(I\left( {1;4} \right)\).

Ta có \[a = 1\], \[b = 4\]. Vậy \[C = a + 3b = 13\].

Đáp án: 13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP