Trong khoảng thời gian từ ngày 01/01/2024 đến hết ngày 30/09/2024, nhóm nghiên cứu đã quan sát sự phát triển của một quần thể sinh vật X. Kết quả nghiên cứu chỉ ra rằng, tại ngày thứ t của năm 2024 (tính từ ngày 01/01/2024) số cá thể sinh vật X trong quần thể được ước lượng bởi hàm số \(f\left( t \right) = - \frac{1}{{300}}{t^3} + b{t^2} + ct + 12000\)(con), \(0 \le t \le 365\) và ngày 26/09/2024 là ngày có số lượng cá thể sinh vật X nhiều nhất với 55740 con. Ngày 26/10/2024 số lượng cá thể sinh vật X được ước lượng khoảng bao nhiêu nghìn con? (kết quả làm tròn tới hàng phần chục)
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Đáp án:
Ta có \(f'\left( t \right) = \frac{{ - 1}}{{100}}{t^2} + 2bt + c\).
Ngày 26/09/2024 là ngày thứ 270 trong năm nên \(t = 270\).
Từ giả thiết ta có \(\left\{ \begin{array}{l}f\left( {270} \right) = 55740\\f'\left( {270} \right) = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}b = 1,2\\c = 81\end{array} \right. \Rightarrow f\left( t \right) = - \frac{1}{{300}}{t^3} + 1,2{t^2} + 81t + 12000\).
Ngày 26/10/2024 là ngày thứ 300 trong năm nên \(t = 300\)\( \Rightarrow f\left( {300} \right) = 54300\) con \( = 54,3\) nghìn con.
Đáp án: 54,3.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:
\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).
Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).
\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).
Bảng biến thiên:
Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.
Đáp án: 1200.
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.