Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\)km. Vận tốc dòng nước là \(5\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c.{v^3}.t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a\,;\,b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Khi bơi ngược dòng vận tốc của cá là \(v - 5\)(km/h).
Thời gian để cá vượt khoảng cách \(100\)km là \(t = \frac{{100}}{{v - 5}}\,\left( {v > 5} \right)\).
Năng lượng tiêu hao của cá khi vượt khoảng cách \(100\)km là \(E\left( v \right) = c.{v^3}.\frac{{100}}{{v - 5}} = 100c.\frac{{{v^3}}}{{v - 5}}\).
Xét hàm số \(y = E\left( v \right)\) ta có \(E'\left( v \right) = 100c.\frac{{3{v^2}\left( {v - 5} \right) - {v^3}}}{{{{\left( {v - 5} \right)}^2}}} = 100c.\frac{{{v^2}\left( {2v - 15} \right)}}{{{{\left( {v - 5} \right)}^2}}}\).
Giải phương trình \(E'\left( v \right) = 0 \Leftrightarrow v = 7,5\)(do \(v > 5\)). Ta có bảng biến thiên

Vậy vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {5\,;\,7,5} \right)\) thì năng lượng tiêu hao của cá giảm. Khi đó giá trị lớn nhất của \(b - a\) là 2,5.
Đáp án: 2,5.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
Đồ thị hàm số \[f\left( x \right) = 5x - 1 + \frac{8}{{x - 1}}\] có tiệm cận đứng là \(x = 1\) và tiệm cận xiên \(y = 5x - 1\).
Do đó, tâm đối xứng của đồ thị hàm số là \(I\left( {1;4} \right)\).
Ta có \[a = 1\], \[b = 4\]. Vậy \[C = a + 3b = 13\].
Đáp án: 13.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



