Câu hỏi:

08/10/2025 80 Lưu

Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\)km. Vận tốc dòng nước là \(5\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c.{v^3}.t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a\,;\,b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

2,5

Khi bơi ngược dòng vận tốc của cá là \(v - 5\)(km/h).

Thời gian để cá vượt khoảng cách \(100\)km là \(t = \frac{{100}}{{v - 5}}\,\left( {v > 5} \right)\).

Năng lượng tiêu hao của cá khi vượt khoảng cách \(100\)km là \(E\left( v \right) = c.{v^3}.\frac{{100}}{{v - 5}} = 100c.\frac{{{v^3}}}{{v - 5}}\).

Xét hàm số \(y = E\left( v \right)\) ta có \(E'\left( v \right) = 100c.\frac{{3{v^2}\left( {v - 5} \right) - {v^3}}}{{{{\left( {v - 5} \right)}^2}}} = 100c.\frac{{{v^2}\left( {2v - 15} \right)}}{{{{\left( {v - 5} \right)}^2}}}\).

Giải phương trình \(E'\left( v \right) = 0 \Leftrightarrow v = 7,5\)(do \(v > 5\)). Ta có bảng biến thiên

index_html_c6d7c1f400df6318.png

Vậy vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {5\,;\,7,5} \right)\) thì năng lượng tiêu hao của cá giảm. Khi đó giá trị lớn nhất của \(b - a\) là 2,5.

Đáp án: 2,5.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

Đồ thị hàm số \[f\left( x \right) = 5x - 1 + \frac{8}{{x - 1}}\] có tiệm cận đứng là \(x = 1\) và tiệm cận xiên \(y = 5x - 1\).

Do đó, tâm đối xứng của đồ thị hàm số là \(I\left( {1;4} \right)\).

Ta có \[a = 1\], \[b = 4\]. Vậy \[C = a + 3b = 13\].

Đáp án: 13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP