Một con cá hồi bơi ngược dòng để vượt khoảng cách là \(100\)km. Vận tốc dòng nước là \(5\)(km/h). Nếu vận tốc bơi của cá khi nước đứng yên là \(v\)(km/h), \(\left( {v > 5} \right)\) thì năng lượng tiêu hao của cá trong \(t\) giờ được cho bởi công thức \(E\left( v \right) = c.{v^3}.t\), trong đó \(c\) là hằng số dương, \(E\) được tính bằng Jun. Biết rằng vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {a\,;\,b} \right)\) thì năng lượng tiêu hao của cá giảm. Hãy tính giá trị lớn nhất của \(b - a\) (kết quả làm tròn tới hàng phần mười).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Đáp án:
Khi bơi ngược dòng vận tốc của cá là \(v - 5\)(km/h).
Thời gian để cá vượt khoảng cách \(100\)km là \(t = \frac{{100}}{{v - 5}}\,\left( {v > 5} \right)\).
Năng lượng tiêu hao của cá khi vượt khoảng cách \(100\)km là \(E\left( v \right) = c.{v^3}.\frac{{100}}{{v - 5}} = 100c.\frac{{{v^3}}}{{v - 5}}\).
Xét hàm số \(y = E\left( v \right)\) ta có \(E'\left( v \right) = 100c.\frac{{3{v^2}\left( {v - 5} \right) - {v^3}}}{{{{\left( {v - 5} \right)}^2}}} = 100c.\frac{{{v^2}\left( {2v - 15} \right)}}{{{{\left( {v - 5} \right)}^2}}}\).
Giải phương trình \(E'\left( v \right) = 0 \Leftrightarrow v = 7,5\)(do \(v > 5\)). Ta có bảng biến thiên
Vậy vận tốc bơi của cá khi nước đứng yên thuộc khoảng \(\left( {5\,;\,7,5} \right)\) thì năng lượng tiêu hao của cá giảm. Khi đó giá trị lớn nhất của \(b - a\) là 2,5.
Đáp án: 2,5.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số tiền thu về khi bán \(x\) mét vải lụa là: \(220x\). Lợi nhuận thu được khi bán \(x\) mét vải lụa là:
\(L\left( x \right) = 220x - \left( {{x^3} - 3{x^2} - 20x + 500} \right) = - {x^3} + 3{x^2} + 240x - 500\).
Xét hàm số \(L\left( x \right) = - {x^3} + 3{x^2} + 240x - 500\) với \(x \in \left[ {1;18} \right]\).
\(L'\left( x \right) = - 3{x^2} + 6x + 240 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 10 \in [1;18]\\x = - 8 \notin [1;18]\end{array} \right.\).
Bảng biến thiên:
Vậy hộ làm nghề dệt này thu được lợi nhuận tối đa trong một ngày là \(1200\) nghìn đồng khi sản xuất \(10\) mét vải lụa trong một ngày.
Đáp án: 1200.
Lời giải
a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).
b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).
c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).
d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.