Câu hỏi:

08/10/2025 108 Lưu

Một mẫu giấy in hình chữ nhật được thiết kế với vùng in có diện tích \(300\,{\rm{c}}{{\rm{m}}^{\rm{2}}}\), lề trái và lề phải là 2 cm, lề trên và lề dưới là 3 cm. Gọi \(x\left( {{\rm{cm}}} \right)\) là chiều rộng của tờ giấy.

(a) Tính diện tích của tờ giấy theo \(x\).

(b) Kí hiệu diện tích tờ giấy là \(S\left( x \right)\). Khảo sát sự biến thiên của hàm số \(y = S\left( x \right)\).

(c) Tìm kích thước của tờ giấy sao cho nguyên liệu giấy được sử dụng là ít nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(y\,(\;{\rm{cm}})\) là chiều dài của tờ giấy. Theo giả thiết, ta có \(\left( {x - 4} \right)\left( {y - 6} \right) = 300\).

Suy ra \(y = 6 + \frac{{300}}{{x - 4}}\).

a) Diện tích của tờ giấy được thiết kế là: \(S\left( x \right) = xy = \frac{{x\left( {6x + 276} \right)}}{{x - 4}}.\)

b) Khảo sát sự biến thiên của hàm số \(S\left( x \right)\):

Tập xác định: \(\left( {4; + \infty } \right)\).

Sự biến thiên: Ta có \(S\left( x \right) = 6x + 300 + \frac{{1200}}{{x - 4}}\).

\(S'\left( x \right) = \frac{{6{{\left( {x - 4} \right)}^2} - 1200}}{{{{\left( {x - 4} \right)}^2}}},S'\left( x \right) = 0 \Leftrightarrow x = {x_0} = 4 + 10\sqrt 2 \).

- Hàm số đồng biến trên khoảng \(\left( {4 + 10\sqrt 2 ; + \infty } \right)\), nghịch biến trên khoảng \(\left( {4;4 + 10\sqrt 2 } \right)\).

- Hàm số đạt cực tiểu tại \(x = 4 + 10\sqrt 2 \).

- Giới hạn vô cực: \(\mathop {\lim }\limits_{x \to {4^ + }} S\left( x \right) = + \infty \), giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to + \infty } S\left( x \right) = + \infty \).

- Bảng biến thiên:

index_html_847d9e8c736ef6c1.png

c) Kích thước của tờ giấy để nguyên liệu sử dụng ít nhất là:

Chiều rộng \(x = 4 + 10\sqrt 2 \approx 18,14(\;{\rm{cm}})\), Chiều dài \(y = 6 + \frac{{300}}{{x - 4}} = 6 + \frac{{30}}{{\sqrt 2 }} \approx 27,21(\;{\rm{cm}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Bán kính của hình bán nguyệt là \(\frac{x}{2}\) nên nửa chu vi bán nguyệt là \(\frac{{\pi x}}{2}\).

b) Đúng.Ta có \(2\left( {x + y} \right) + \frac{{\pi x}}{2} = 8 \Leftrightarrow y = 4 - \frac{{x\left( {4 + \pi } \right)}}{4}\).

c) Sai.Diện tích của cửa sổ:\(S = xy + \frac{1}{2}\pi {\left( {\frac{x}{2}} \right)^2} = x\left( {4 - x - \frac{{\pi x}}{4}} \right) + \frac{{\pi {x^2}}}{8} = 4x - {x^2} - \frac{{\pi {x^2}}}{8}\).

d) Đúng.\(S\) đạt giá trị lớn nhất khi \(x = \frac{4}{{2 + \frac{\pi }{4}}} = \frac{{16}}{{8 + \pi }}\) nên \(y = 4 - x - \frac{{\pi x}}{4} = \frac{{16}}{{8 + \pi }}\).

Lời giải

a) Sai. Ta có: \(v\left( t \right) = s'\left( t \right) = 3{t^2} - 6t + 8\).

\(v\left( 3 \right) = {3.3^2} - 6.3 + 8 = 17\left( {{\rm{m/s}}} \right)\).

b) Đúng. Ta có: \(s\left( t \right) = {t^3} - 3{t^2} + 8t + 1 = 13\)\( \Leftrightarrow {t^3} - 3{t^2} + 8t - 12 = 0 \Leftrightarrow t = 2\).

Khi \(t = 2\), vận tốc của chất điểm là \(v\left( 2 \right) = {3.2^2} - 6.2 + 8 = 8\left( {{\rm{m/s}}} \right)\).

c) Đúng. Xét \(v\left( t \right) = 3{t^2} - 6t + 8,t \ge 0\)

\( \Rightarrow v'\left( t \right) = 6t - 6 \Rightarrow v'\left( t \right) = 0 \Leftrightarrow t = 1\).

Bảng biến thiên:

index_html_104d6a6fd773ada7.png

Từ bảng biến thiên ta thấy giá trị nhỏ nhất của \(v\left( t \right)\) là \(5\left( {{\rm{m}}/{\rm{s}}} \right)\) đạt tại \(t = 1\).

d) Sai. Ta có: \(a\left( t \right) = v'\left( t \right) = 6t - 6\).

Vận tốc nhỏ nhất của chất điểm đạt tại \(t = 1\).

Khi đó gia tốc là \(a\left( 1 \right) = 0\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP