Câu hỏi:

08/10/2025 147 Lưu

Một bác nông dân có ba tấm lưới B40, mỗi tấm dài \(a\)(m) và muốn rào một mảnh vườn dọc theo bờ sông có dạng hình thang cân \(ABCD\) như hình vẽ dưới đây biết rằng bờ sông là đường thẳng \(CD\) không phải rào lưới. Hỏi bác nông dân đó có thể rào được mảnh vườn có diện tích lớn nhất là bao nhiêu mét vuông?

Picture 1

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

index_html_f1dbe91b095a864f.png

Gọi \(M,\,N\) lần lượt là hình chiếu vuông góc của \(A,\,B\) lên \(CD\).

Đặt \(x = MD\), \(\left( {0 < x < a} \right)\) suy ra \(AM = \sqrt {A{D^2} - M{D^2}} = \sqrt {{a^2} - {x^2}} \).

Diện tích của mảnh vườn hình thang cân là \(S\left( x \right) = \frac{{\left( {AB + CD} \right)AM}}{2} = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \).

Xét hàm số \(f\left( x \right) = \left( {a + x} \right)\sqrt {{a^2} - {x^2}} \)trên khoảng \(\left( {0 < x < a} \right)\).

Đạo hàm \(f'\left( x \right) = \frac{{ - 2{x^2} - ax + {a^2}}}{{\sqrt {{a^2} - {x^2}} }} = 0 \Leftrightarrow \left[ \begin{array}{l}x = - a \notin \left( {0 < x < a} \right)\\x = \frac{a}{2} \in \left( {0 < x < a} \right)\end{array} \right.\).

Bảng biến thiên hàm số \(f\left( x \right)\) trên khoảng \(\left( {0\,;\,a} \right)\).

index_html_759a9035b790e038.png

Từ bảng biến thiên suy ra \(\mathop {{\rm{max}}}\limits_{\left( {0;\,a} \right)} f\left( x \right) = f\left( {\frac{a}{2}} \right) = \frac{{3\sqrt 3 {a^2}}}{4}\).

Vậy bác nông dân có thể rào được mảnh vườn có diện tích lớn nhất là \(\frac{{3\sqrt 3 {a^2}}}{4}\)\({{\rm{m}}^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có: \(v\left( t \right) = s'\left( t \right) = 3{t^2} - 6t + 8\).

\(v\left( 3 \right) = {3.3^2} - 6.3 + 8 = 17\left( {{\rm{m/s}}} \right)\).

b) Đúng. Ta có: \(s\left( t \right) = {t^3} - 3{t^2} + 8t + 1 = 13\)\( \Leftrightarrow {t^3} - 3{t^2} + 8t - 12 = 0 \Leftrightarrow t = 2\).

Khi \(t = 2\), vận tốc của chất điểm là \(v\left( 2 \right) = {3.2^2} - 6.2 + 8 = 8\left( {{\rm{m/s}}} \right)\).

c) Đúng. Xét \(v\left( t \right) = 3{t^2} - 6t + 8,t \ge 0\)

\( \Rightarrow v'\left( t \right) = 6t - 6 \Rightarrow v'\left( t \right) = 0 \Leftrightarrow t = 1\).

Bảng biến thiên:

index_html_104d6a6fd773ada7.png

Từ bảng biến thiên ta thấy giá trị nhỏ nhất của \(v\left( t \right)\) là \(5\left( {{\rm{m}}/{\rm{s}}} \right)\) đạt tại \(t = 1\).

d) Sai. Ta có: \(a\left( t \right) = v'\left( t \right) = 6t - 6\).

Vận tốc nhỏ nhất của chất điểm đạt tại \(t = 1\).

Khi đó gia tốc là \(a\left( 1 \right) = 0\left( {{\rm{m}}/{{\rm{s}}^2}} \right)\).

Lời giải

a) Đúng. Chi phí mỗi ngày là tổng các chi phí nên \(C\left( x \right) = 0,0005{x^2} + 0,15x + 5\) (triệu đồng).

b) Sai. Khi \(x = 100\), ta có \(C\left( {100} \right) = 0,0005 \times {100^2} + 0,15 \times 100 + 5 = 25\).

c) Sai.Chi phí trung bình trên mỗi khối sản phẩm là:

\(\overline c \left( x \right) = \frac{{0,0005{x^2} + 0,15x + 5}}{x} = 0,0005x + 0,15 + \frac{5}{x}\).

d) Đúng. Xét hàm số \(\overline c \left( x \right) = 0,0005x + 0,15 + \frac{5}{x}\), \(0 < x \le 200\).

Ta có \({\overline c ^{\,\prime }}\left( x \right) = \frac{5}{{{{10}^4}}} - \frac{5}{{{x^2}}}\), \({\overline c ^\prime }\left( x \right) = 0 \Leftrightarrow {x^2} = {10^4} \Rightarrow x = 100\) (do \(x \in \left( {0;200} \right]\).

Bảng biến thiên:

index_html_8cf4fbb27e864d19.png

Vậy chi phí trung bình giảm khi hàm số \(\overline c \left( x \right)\)nghịch biến, tức là \(x \in \left( {0;100} \right)\).