Phần 1. Trắc nghiệm nhiều phương án lựa chọn
Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
\(\left( {0; + \infty } \right)\).
\(\left( { - \infty ; - 1} \right)\).
\(\left( { - \infty ; - 2} \right)\).
\(\left( { - 2; - 1} \right)\).
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 1 có đáp án !!
Quảng cáo
Trả lời:

Chọn D
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\).
Vậy chọn đáp án D.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng.Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{{10}}\) (giờ).
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{{10}} \cdot 480000 = 48000.\) (đồng).
b) Sai.Gọi \(x\)(km/h) là vận tốc của tàu, \(x > 0\).
Thời gian tàu chạy quãng đường \(1\)km là: \(\frac{1}{x}\) (giờ).
Chi phí tiền nhiên liệu cho phần thứ nhất là: \(\frac{1}{x} \cdot 480 = \frac{{480}}{x}\)(nghìn đồng).
Hàm chi phí cho phần thứ hai là \(p = k{x^3}\) (nghìn đồng/ giờ).
Khi \(x = 10 \Rightarrow p = 30 \Rightarrow k = 0,03\) nên \(p = 0,03{x^3}\) (nghìn đồng/ giờ).
Do đó chi phí phần 2 để chạy \(1\)km là: \(\frac{1}{x} \cdot 0,03{x^3} = 0,03{x^2}\)(nghìn đồng).
Vậy tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
c) Đúng.Tổng chi phí: \(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2}\).
Thay \(x = v = 30\)(km/giờ) vào ta có \(f\left( {30} \right) = \frac{{480}}{{30}} + 0,{03.30^2} = 43\)(nghìn đồng).
d) Đúng.\(f\left( x \right) = \frac{{480}}{x} + 0,03{x^2} = \frac{{240}}{x} + \frac{{240}}{x} + 0,03{x^2} \ge 3\sqrt[3]{{1728}} = 36.\)
Dấu “=” xảy ra khi \(x = 20\).
Lời giải
Gọi chiều rộng của bể là \(3x{\rm{ }}\left( {\rm{m}} \right)\). Ta có chiều dài bể là \(4x{\rm{ (m)}}\) và chiều cao của bể là \(\frac{2}{{3{x^2}}}\left( {\rm{m}} \right).\)
Khi đó tổng diện tích bề mặt xây là:
\(T = \left( {3x + 4x} \right).2.\frac{2}{{3{x^2}}} + 2.3x.4x - \frac{2}{9}.3x.4x = \frac{{28}}{{3{x^2}}} + \frac{{64{x^2}}}{3} \ge 2.\sqrt {\frac{{28}}{{3{x^2}}}.\frac{{64{x^2}}}{3}} = \frac{{32\sqrt 7 }}{3}{\rm{ }}\left( {{{\rm{m}}^{\rm{2}}}} \right)\).
Chi phí \(C\)(tính theo đồng) xây dựng là: \(C = T.980000 \ge \frac{{32\sqrt 7 }}{3}.980000 \approx 27657000\) (đồng).
Vậy chi phí thấp nhất mà ông Nam phải chi trả là \(28\) triệu đồng.
Đáp án: 28.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Hàm số có giá trị cực tiểu bằng \( - 1\).
Hàm số có giá trị nhỏ nhất bằng \( - 1\).
Hàm số có đúng một cực trị.
Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.