Câu hỏi:

08/10/2025 494 Lưu

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên:

index_html_3bb40bcb4028d2b7.png

Khẳng định nào sau đây là khẳng định sai?

Hàm số có giá trị cực tiểu bằng \( - 1\).

Hàm số có giá trị nhỏ nhất bằng \( - 1\).

Hàm số có đúng một cực trị.

Hàm số đạt cực đại tại \(x = 0\) và đạt cực tiểu tại \(x = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Dựa vào bảng biến thiên, nhận thấy đạo hàm \(y'\) của hàm số chỉ đổi dấu một lần khi \(x\) đi qua \({x_0} = 1\) nên hàm số chỉ có một cực trị duy nhất, do đó phương án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện \(\left\{ \begin{array}{l}x > 0\\1700 - 7x > 0\end{array} \right. \Leftrightarrow 0 < x < \frac{{1700}}{7}\).

Doanh thu được khi công ty sản xuất và tiêu thụ hết \(x\) sản phẩm là \(R\left( x \right) = xp\left( x \right) = 1700x - 7{x^2}\).

Do đó, lợi nhuận thu được là

\(P\left( x \right) = xp\left( x \right) - C\left( x \right)\)\( = 1700x - 7{x^2} - \left( {16\,000 + 500x - 1,6{x^2} + 0,004{x^3}} \right)\)

\(P\left( x \right) = - 0,004{x^3} - 5,4{x^2} + 1200x - 16\,000\), \(0 < x < \frac{{1700}}{7}\).

\(P'\left( x \right) = - 0,012{x^2} - 10,8x + 1200\); \(P'\left( x \right) = 0 \Leftrightarrow - 0,012{x^2} + 10,8x + 1200 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1000\\x = 100\end{array} \right.\).

Đối chiếu điều kiện ta có \(x = 100\).

Lập bảng biến thiên của hàm số, ta thu được kết quả là

\(\mathop {\max }\limits_{\left( {0;\frac{{1700}}{7}} \right)} P\left( x \right) = P\left( {100} \right) = 46\,000\) (nghìn đồng).

Vậy công ty cần sản xuất 100 sản phẩm thì lợi nhuận thu được là cao nhất.

Đáp án: 100.

Lời giải

Chọn D

Dựa vào bảng biến thiên ta có hàm số nghịch biến trên các khoảng \(\left( { - 2; - 1} \right)\) và \(\left( { - 1;0} \right)\).

Vậy chọn đáp án D.