Câu hỏi:

09/10/2025 48 Lưu

Tìm nghiệm nguyên âm lớn nhất của phương trình \( - 5x + 2y = 7\). Kết quả là \(x = a\,;\,\,y = b\). Tính \[a + b.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \( - 5x + 2y = 7\) hay \(2y = 5x + 7\).

Khi đó \(y = \frac{{5x + 7}}{2} = 2x + \frac{{x + 7}}{2}.\)

Đặt \(t = \frac{{x + 7}}{2}\) nên \(x = 2t - 7\).

Suy ra \(y = 2\left( {2t - 7} \right) + t\) nên \(y = 5t - 14\,\,\left( {t \in \mathbb{Z}} \right)\).

Nên nghiệm nguyên của phương trình là \(\left\{ {\begin{array}{*{20}{c}}{x = 2t - 7}\\{y = 5t - 14}\end{array}} \right.\)\(\left( {t \in \mathbb{Z}} \right)\).

Vì \[x,{\rm{ }}y\] nguyên âm nên \(\left\{ {\begin{array}{*{20}{c}}{2t - 7 < 0}\\{5t - 14 < 0}\end{array}} \right.\)O10-2024-GV154O10-2024-GV147 nên \(\left\{ {\begin{array}{*{20}{c}}{t < \frac{7}{2}}\\{t < \frac{{14}}{5}}\end{array}} \right.\) suy ra \(t\)\( < \frac{{14}}{5}\).

Vì nghiệm nguyên âm lớn nhất, mà \[t\] nguyên nên \(t = 2\)

Vậy \(x =  - 3\,;\,\,y =  - 4.\)

Đáp án: −7.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. Vậy nghiệm của phương trình đã cho là \(x = 0\).

B. Vậy nghiệm của phương trình đã cho là \(x =  - \frac{3}{2}\).

C. Vậy nghiệm của phương trình đã cho là \(x = 0;\) \(x =  - \frac{3}{2}\).      

D. Vậy phương trình vô nghiệm.

Lời giải

Chọn B

Điều kiện xác định của phương trình là: \(x \ne 0\) và \(x \ne  - 1\).

Khi nhận được kết quả là \(x = 0\) và \(x =  - \frac{3}{2}\), ta thấy chỉ có giá trị \(x =  - \frac{3}{2}\) thỏa mãn điều kiện.

Vậy nghiệm của phương trình đã cho là \(x =  - \frac{3}{2}\).

Lời giải

Chọn D

Gọi \(x,y\) lần lượt là số lạng thịt bò, số lạng thịt cá mà bác An ăn trong một ngày.

Do một lạng (0,1 kg) thịt bò chứa \(26\,\,{\rm{g}}\) protein, một lạng (0,1 kg) cá chứa \(22\,\,{\rm{g}}\) protein.

Và bác An định chỉ bổ sung \(70\,\,{\rm{g}}\) protein từ thịt bò và thịt cá trong một ngày.

Do đó, phương trình bậc nhất hai ẩn \(x,\,\,y\) biểu diễn nhu cầu bổ sung protein của bác An là \(26x + 22y = 70\).

Câu 5

A. \(y =  - 4x - 1\).
B. \(y = \frac{4}{3}x + \frac{1}{3}\).  
C. \(y = 4x + 1\).  
D. \(y = \frac{4}{3}x - \frac{1}{3}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[2{x^2} + 2 = 0\].   
B. \[3y - 1 = 5\left( {y - 2} \right)\].  
C. \[2x + \frac{y}{2} - 1 = 0\].
D. \[3\sqrt x  + {y^2} = 0\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP