B. Tự luận
Cho hình lập phương\(ABCD.A'B'C'D'\) có cạnh bằng \(5\).
(a) Tìm góc giữa các cặp vectơ sau: \(\overrightarrow {AC} \) và \(\overrightarrow {AB} \); \(\overrightarrow {AC} \) và \(\overrightarrow {B'D'} \); \(\overrightarrow {AC} \) và \(\overrightarrow {CD} \); \(\overrightarrow {AD'} \) và \(\overrightarrow {BD} \).
(b) Tính các tích vô hướng:\(\overrightarrow {AC} .\overrightarrow {AB} \); \(\overrightarrow {AC} .\overrightarrow {B'D'} \); \(\overrightarrow {AD'} .\overrightarrow {BD} \).
(c) Chứng minh \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \).
Câu hỏi trong đề: Bài tập ôn tập Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:

a) Ta có: \(\left( {\overrightarrow {AC} ,\overrightarrow {AB} } \right) = \widehat {CAB} = 45^\circ \); \(\left( {\overrightarrow {AC} ,\,\overrightarrow {B'D'} } \right) = \left( {\overrightarrow {AC} ,\,\overrightarrow {BD'} } \right) = 90^\circ \)
\[\left( {\overrightarrow {AC} ,\,\overrightarrow {CD} } \right) = \left( {\overrightarrow {CE} ,\,\overrightarrow {CD} } \right) = 180^\circ - 45^\circ = 135^\circ \] (\(E\) là điểm đối xứng của \(A\) qua \(C\))
\(\overrightarrow {AD'} = \overrightarrow {BC'} \Rightarrow \left( {\overrightarrow {AD'} ,\overrightarrow {BD} } \right) = \left( {\overrightarrow {BC'} ,\overrightarrow {BD} } \right) = \widehat {C'BD}\) mà tam giác \(C'BD\) là tam giác đều nên khi đó ta có \(\widehat {C'BD} = 60^\circ \).
b) Ta có \(AC = BD = B'D' = 5\sqrt 2 \) suy ra:
.
Do \(AC\) vuông góc với \(B'D'\) nên \(\overrightarrow {AC} .\overrightarrow {B'D'} = 0\).
.
c) Ta cần chứng minh \(\overrightarrow {AC'} .\overrightarrow {BD} = 0\)
Ta có: \(\overrightarrow {AC'} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} \) và \(\overrightarrow {BD} = \overrightarrow {AD} - \overrightarrow {AB} \) nên \(\overrightarrow {AC'} .\overrightarrow {BD} = \left( {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right).\left( {\overrightarrow {AD} - \overrightarrow {AB} } \right)\)
\[ = \overrightarrow {AB} .\overrightarrow {AD} - \overrightarrow {A{B^2}} + \overrightarrow {A{D^2}} - \overrightarrow {AD} .\overrightarrow {AB} + \overrightarrow {AA'} .\overrightarrow {AD} - \overrightarrow {AA'} .\overrightarrow {AB} = {5^2} - {5^2} = 0\].
Suy ra \(\overrightarrow {AC'} \) vuông góc với \(\overrightarrow {BD} \) (điều phải chứng minh).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Theo công thức vì \[G\] là trọng tâm tứ diện \[ABCD \Rightarrow \overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \].
b) Đúng. Ta có:
\[\overrightarrow {OG} = \frac{1}{4}\left( {\overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} + \overrightarrow {OG} } \right) = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {AG} + \overrightarrow {OB} + \overrightarrow {BG} + \overrightarrow {OC} + \overrightarrow {CG} + \overrightarrow {OD} + \overrightarrow {DG} } \right)\]\[ = \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right)\].
c) Đúng.\[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \Leftrightarrow \overrightarrow {GA} + \overrightarrow {GC} + \overrightarrow {GD} = - \overrightarrow {GB} = \overrightarrow {BG} \].
d) Sai.\[\overrightarrow {AG} = \overrightarrow {AO} + \overrightarrow {OG} = \overrightarrow {AO} + \frac{1}{4}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} } \right) = \overrightarrow {AO} + \frac{1}{4}\left( {4\overrightarrow {OA} + \overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\]
\[ = \overrightarrow {AO} + \overrightarrow {OA} + \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right) = \frac{1}{4}\left( {\overrightarrow {AB} + \overrightarrow {AC} + \overrightarrow {AD} } \right)\].
Lời giải
Đặt \(\left| {\overrightarrow {{F_1}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_2}} } \right| = 25\) N, \(\left| {\overrightarrow {{F_3}} } \right| = 4\) N.
Theo giả thiết ta có
\({\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right|^2} = {\left| {\overrightarrow {{F_1}} } \right|^2} + {\left| {\overrightarrow {{F_2}} } \right|^2} + {\left| {\overrightarrow {{F_3}} } \right|^2} + 2\overrightarrow {{F_1}} \overrightarrow {{F_2}} = {25^2} + {12^2} + {4^2} + 2.25.12\cos 100^\circ \)
nên \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 5{\rm{,}}1\) N.
Đáp án: 5,1.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(5\sqrt 5 .\)
\(\sqrt {124} .\)
8.
124.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.