Câu hỏi:

09/10/2025 32 Lưu

Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. Cả nước đã chung tay ủng hộ và xây dựng lại nhà sàn cho người dân Làng Nủ theo thiết kế như hình vẽ dưới đây.

Cơn bão Yagi gây thiệt hại nghiêm trọng về người và tài sản cho nước ta, trong đó nặng nề nhất là tại thôn Làng Nủ, xã Phúc Khánh, huyện Bảo Yên, tỉnh Lào Cai, lũ quét và sạt lở đất đã vùi lấp 40 ngôi nhà. (ảnh 1)

Giả sử áp dụng hệ trục tọa độ \(Oxyz\) như hình vẽ (đơn vị trên các trục là mét). Xét một bên của mái nhà gồm có một hình chữ nhật CDFE và một hình thang ADFG với các điểm \(G\left( {6; - 6;6} \right);C\left( {3;4;8} \right);F\left( {4; - 4;7} \right)\) và điểm \(I\) là trung điểm CE.

Biết góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(a^\circ \). Tìm a (kết quả làm tròn đến hàng đơn vị).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

45

Ta có CDFE là hình chữ nhật và I là trung điểm của CE, nên F D đối xứng nhau qua mặt phẳng \(\left( {Oxz} \right)\).

Có \(F\left( {4; - 4;7} \right)\), suy ra \(D\left( {4;4;7} \right)\).

Xét hình thang ADFG, có A đối xứng với G qua mặt \(\left( {Oxz} \right)\).

Có \(G\left( {6; - 6;6} \right)\), suy ra \(A\left( {6;6;6} \right)\).

Ta có điểm B nằm trên mặt phẳng \(\left( {Oyz} \right)\), tọa độ điểm \(B\left( {0;6;6} \right)\).

Suy ra \(\overrightarrow {AB} = \left( { - 6;0;0} \right)\) và \(\overrightarrow {DC} = \left( { - 1;0;1} \right)\), có:

\({\rm{cos}}\left( {\overrightarrow {AB} ,\overrightarrow {DC} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {DC} }}{{\left| {\overrightarrow {AB} \left| . \right|\overrightarrow {DC} } \right|}} = \frac{6}{{\sqrt {{6^2}} .\sqrt {{1^2} + {1^2}} }} = \frac{1}{{\sqrt 2 }}\).

Vậy góc giữa hai vectơ \(\overrightarrow {DC} \) và \(\overrightarrow {AB} \) bằng \(45^\circ \).

Đáp án: 45.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng.Ra đa đặt trên đỉnh tháp, trục \(Oz\)hướng thẳng đứng lên phía trên, suy ra tọa độ của đỉnh tháp \(E(0;0;0,1)\).

b) Đúng. Tọa độ điểm \(F\left( {400; - 300;12} \right)\).

\[\overrightarrow {EF} = \left( {400; - 300;11,9} \right) \Rightarrow EF \approx 500 < 600\,{\rm{km}}\]. Vậy \(F\)nằm trong phạm vi điều khiển của ra đa.

c) Sai. Từ \(F\), máy bay bay 1 giờ đến \(A\) với vận tốc \(90\,\,{\rm{km/h}}\) theo phương \(\vec a = (3;4;0)\).

Suy ra \[\left\{ \begin{array}{l}\overrightarrow {AF} = k\overrightarrow a \\\left| {\overrightarrow {AF} } \right| = 900\end{array} \right. \Rightarrow k\left| {\overrightarrow a } \right| = 900 \Rightarrow k = \frac{{900}}{{\sqrt {{3^2} + {4^2}} }} = 180.\]

Suy ra \(\overrightarrow {AF} = \left( {540;720;0} \right) \Rightarrow A\left( {940;420;12} \right).\)

d) Sai. Gọi \(K\left( {x,y,z} \right)\) là điểm máy bay đạt đến phạm vi quan sát của ra đa, suy ra \(EK = 600;\)\[EF \approx 500\].

Khi đó \(\overrightarrow {FK} = k\overrightarrow a \left( {k > 0} \right) \Leftrightarrow \left\{ \begin{array}{l}x - 400 = 3k\\y + 300 = 4k\\z - 12 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 400 + 3k\\y = - 300 + 4k\\z = 12\end{array} \right. \Rightarrow K\left( {400 + 3k; - 300 + 4k;12} \right)\)

Suy ra \(\overrightarrow {EK} = \left( {400 + 3k; - 300 + 4k;11,9} \right)\), mà \(EK = 600.\)

Suy ra \({\left( {400 + 3k} \right)^2} + {\left( { - 300 + 4k} \right)^2} + 11,{9^2} = {600^2} \Leftrightarrow 25{k^2} = 109858,39 \Leftrightarrow k \approx 66.\)

Khi đó \(K\left( {598; - 36;12} \right) \Rightarrow \overrightarrow {FK} = \left( {198;264;0} \right) \Rightarrow FK = 330\).

Thời gian máy bay trong phạm vi theo dõi của ra đa \(t = \frac{{330.60}}{{900}} = 22\) phút.

Lời giải

Một giỏ hoa treo trong nhà làm bằng  3  sợi dây không giãn, mỗi sợi dài 60 cm miếng kê là một miếng gỗ cân đối hình tròn bán kính 20 cm ba sợi dây được thắt một đầu bên trên và đỡ giá gỗ tại 3 điểm tạo thành tam giác đều (ảnh 1)

Biết ba sợi dây được thắt một đầu bên trên là điểm \(S\), ba sợi dây đỡ giá gỗ tại 3 điểm tạo thành tam giác đều \(ABC\), độ dài sợi dây \(SA = SB = SC = 60\,\left( {{\rm{cm}}} \right)\), bán kính hình tròn\(OA = OB = OC = 20\,\left( {{\rm{cm}}} \right)\).

Ta có hình chóp tam giác đều \(S.ABC\), gọi \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\).

\( \Rightarrow SO \bot (ABC)\) và \(SO = \sqrt {S{A^2} - O{A^2}} = 40\sqrt 2 \left( {{\rm{cm}}} \right)\).

Gọi lực chịu đựng của mỗi sợi dây là \({T_1},\;T{}_2,{T_3}\)các lực này bằng nhau và không quá 15 N\( \Rightarrow {T_1} = {T_2} = {T_3} \le 15{\rm{N}}\)\( \Rightarrow \left| {\overrightarrow {SA} } \right| = \left| {\overrightarrow {SB} } \right| = \left| {\overrightarrow {SC} } \right| \le 15\,{\rm{N}}\).

Lại có \(\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = \overrightarrow {SO} + \overrightarrow {OA} + \overrightarrow {SO} + \overrightarrow {OB} + \overrightarrow {SO} + \overrightarrow {OC} = 3\overrightarrow {SO} \).

Gọi \(P\)là lực tác động lên miếng kê (là tổng lực của miếng giá gỗ hình tròn và lực của các chậu hoa) nên \(P = \left| {3\overrightarrow {SO} } \right| = 3SO\).

Vì \(P\)chia đều ra ba sợi dây

\( \Rightarrow \frac{P}{{3{T_1}}} = \frac{{3SO}}{{3SA}} = \frac{{SO}}{{SA}} = \frac{{40\sqrt 2 }}{{60}} = \frac{{2\sqrt 2 }}{3} \Leftrightarrow {T_1} = \frac{P}{{2\sqrt 2 }} \le 15{\rm{N}} \Leftrightarrow P \le 30\sqrt 2 {\rm{N}}\).

Suy ra trọng lượng của các chậu hoa là \({P_{hoa}} + {P_{go}} \le 30\sqrt 2 N \Leftrightarrow {P_{hoa}} \le \left( {30\sqrt 2 - 5} \right)N \approx 37,4{\rm{N}}\).

Vậy trọng lượng tối đa của các chậu hoa để dây treo không bị đứt là \(37,4{\rm{N}}\).

Đáp án: 37,4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Khi khắc phục hậu quả của thiên tai, bão lũ, một trong những giải pháp nhằm tiếp tế hàng cứu trợ đến những nơi khó tiếp cận là sử dụng flycam để xác định vị trí chính xác của người cần cứu trợ, sau đó sử dụng drone để vận chuyển các vật dụng thiết yếu thả xuống cho người này, giúp họ có thể cầm cự trong khi chờ đợi lực lượng cứu hộ đến nơi. Hai chiếc drone làm nhiệm vụ chuyển hàng cứu trợ bay lên từ cùng một địa điểm. Chiếc thứ nhất bay đến điểm cách điểm xuất phát \(2,5\,\,{\rm{km}}\) về phía nam và \(1,5\,\,{\rm{km}}\) về phía đông, đồng thời cách mặt đất \(60\,\,{\rm{m}}{\rm{.}}\) Chiếc thứ hai bay đến điểm cách điểm xuất phát \(3\,\,{\rm{km}}\) về phía bắc và \(2,5\,\,{\rm{km}}\) về phía tây, đồng thời cách mặt đất \(40\,\,{\rm{m}}.\)Trong không gian, xét hệ tọa độ \(Oxyz\) với gốc toạ độ \(O\) đặt tại điểm xuất phát của hai drone, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất (được coi là mặt phẳng). Giả sử trong trường hợp khẩn cấp, cần tìm một vị trí trên mặt đất để tiếp nhiên liệu và các vật dụng cứu trợ cho hai drone sao cho tổng khoảng cách từ vị trí tiếp nhiên liệu đó tới hai drone nhỏ nhất. Vị trí cần tìm cách gốc tọa độ \(a\,\,{\rm{km}}\) theo hướng bắc và \(b\,\,{\rm{km}}\) theo hướng tây. Khi đó \(a + b\) bằng bao nhiêu?

index_html_c3342eb86542cb1.png

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

\(\overrightarrow a .\overrightarrow b = 12\).

\[\overrightarrow a .\overrightarrow b = 40\].

\[\overrightarrow a .\overrightarrow b = - 6\].

\[\overrightarrow a .\overrightarrow b = 6\sqrt 3 \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP