Hai chiếc máy bay không người lái cùng bay lên từ một địa điểm. Sau một giờ bay, chiếc thứ nhất cách điểm xuất phát về phía bắc 23 km và về phía tây 18 km, đồng thời cách mặt đất 2 km. Chiếc thứ hai cách điểm xuất phát về phía đông 22 km và về phía nam 27 km, đồng thời cách mặt đất 3 km. Chọn hệ trục tọa độ Oxyz với gốc O đặt tại điểm xuất phát của hai chiếc máy bay, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất sao cho trục Ox hướng về phía bắc, trục Oy hướng về phía tây và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo kilômét. Sau đúng một giờ bay, hai máy bay đó cùng bắn một mục tiêu di động trên mặt đất. Biết tổng khoảng cách từ mỗi máy bay đến mục tiêu là nhỏ nhất, lúc đó mục tiêu cách điểm xuất phát của hai máy bay bao nhiêu kilômét?
Câu hỏi trong đề: Đề kiểm tra Toán 12 Cánh diều Chương 2 có đáp án !!
Quảng cáo
Trả lời:
Đáp án:
Với hệ trục tọa độ được chọn, máy bay thứ nhất có tọa độ \(A\left( {23;18;2} \right)\) máy bay thứ hai có tọa độ \(B\left( { - 22; - 27;3} \right)\).
Gọi \(M\) là vị trí mục tiêu. Vì mục tiêu di động trên mặt đất, nghĩa là \(M \in mp\left( {Oxy} \right)\) nên tọa độ của \(M\) có dạng \(M\left( {a;b;0} \right)\).
Ta cần tìm tọa độ của \(M\) để \(MA + MB\) nhỏ nhất.
Ta thấy \(A,B\) nằm cùng phía đối với \(mp\left( {Oxy} \right)\).
Gọi \(B'\left( { - 22; - 27; - 3} \right)\) là điểm đối xứng của \(B\) qua \(mp\left( {Oxy} \right) \Rightarrow MB = MB'\).
Có \(MA + MB = MA + MB' \ge AB'\).
Khi đó \(MA + MB\) nhỏ nhất bằng \(AB'\) khi \(M\) là giao điểm của \(AB'\) với \(mp\left( {Oxy} \right)\) nghĩa là lúc này ba điểm \(A,M,B'\) thẳng hàng.
Có \(\overrightarrow {AM} = \left( {a - 23;b - 18; - 2} \right),\overrightarrow {AB'} = \left( { - 45; - 45; - 5} \right)\) mà ba điểm \(A,M,B'\) thẳng hàng.
Suy ra \(\frac{{a - 23}}{{ - 45}} = \frac{{b - 18}}{{ - 45}} = \frac{{ - 2}}{{ - 5}} = \frac{2}{5} \Rightarrow a = 5;b = 0 \Rightarrow M\left( {5;0;0} \right)\).
Lúc đó độ dài đoạn OM là khoảng cách từ mục tiêu đến điểm xuất phát của hai máy bay và \(OM = 5\left( {{\rm{km}}} \right)\).
Đáp án: 5.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Vì \[M\] thuộc mặt phẳng sàn nhà có chiều dài 8 m, rộng 6 m nên \[M\left( {x;y;0} \right)\] với \[0 \le x \le 8,0 \le y \le 6\].
Cây quạt \[A\] treo chính giữa bức tường 8 m và cách trần 1 m, cây quạt \[B\] treo chính giữa bức tường 6 m và cách trần 1,5 m.
Suy ra \[A\left( {4;0;3} \right),B\left( {0,3,\frac{5}{2}} \right)\].
Ta có: \[\overrightarrow {MA} = \left( {4 - x, - y,3} \right),\overrightarrow {MB} = \left( { - x,3 - y,\frac{5}{2}} \right)\], \[\left| {\overrightarrow {MA} - 2\overrightarrow {MB} } \right| = \sqrt {{{\left( {x + 4} \right)}^2} + {{\left( {y - 6} \right)}^2} + 4} \].
Để \[\left| {\overrightarrow {MA} - 2\overrightarrow {MB} } \right|\] nhỏ nhất thì \[{\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2}\] nhỏ nhất.
Ta có: \[{\left( {x + 4} \right)^2} + {\left( {y - 6} \right)^2} \ge {\left( {0 + 4} \right)^2} + 0 = 16\].
Dấu bằng xảy ra khi \[x = 0,y = 6\].
Vậy \[{x^2} + {y^2} + {z^2} = {0^2} + {6^2} + {0^2} = 36\].
Đáp án: 36.
Lời giải
a) Đúng. Tọa độ điểm \(A\) là \(\left( {2;0;0} \right)\).
b) Sai. Ta có \[OD = AD - OA = 8 - 2 = 6\]m.
Tọa độ điểm \[C\left( { - 6;\,6;0} \right)\].
Vì vậy \[\overrightarrow {AC} = \left( { - 8;6;0} \right)\].
c) Sai.Gọi \[M\] là trung điểm của \[HG\] nên \[QM = 7 - 5 = 2\]m, \[MG = \frac{{HG}}{2} = \frac{{AB}}{2} = 3\]m.
Ta có \[QG = \sqrt {Q{M^2} + M{G^2}} = \sqrt {{2^2} + {3^2}} = \sqrt {13} \]m.
Diện tích cần lợp là \[S = 2{S_{PQGF}} = 2.8.\sqrt {13} = 16\sqrt {13} \]m.
Số tiền cần phải trả là \[S.22.11\,000 \approx 13\,961\,000\] đồng.
d) Đúng. Gọi \[J\] là trung điểm của \[BC\] nên \[J\left( { - 2;6;0} \right)\].
Suy ra \[I\] là trung điểm của \[FG\] nên \[I\left( { - 2;6;5} \right)\].
Ta có \[KI = \sqrt {{{\left( { - 2} \right)}^2} + {6^2} + {0^2}} = 2\sqrt {10} \]m.
Vì vậy \[{d_{\min }} = OK + KI = 5 + 2\sqrt {10} \].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\alpha = 180^\circ \).
\(\alpha = 0^\circ \).
\(\alpha = 90^\circ \).
\(\alpha = 45^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


