Câu hỏi:

12/10/2025 28 Lưu

Một sân tennis có dạng hình chữ nhật với chiều dài và chiều rộng của sân lần lượt là \(23,77\;m\) và \(10,97\;m\). Bạn Tài và bạn Đức tính độ dài đường chéo của sân tennis đó rồi cho kết quả lần lượt là \({c_1} = 26,2\;m\) và \({c_2} = 26,18\;m\). Hỏi bạn nào cho kết quả chính xác hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(c\) là độ dài đường chéo của sân tennis, áp dụng định lí Pythagore ta có: \({c^2} = 23,{77^2} + 10,{97^2} = 685,3538\). Suy ra \(c = \sqrt {685,3538}  = 26,17926279 \ldots \)

Ta thấy: \(c < 26,18 < 26,2\) tức là \(c < {c_2} < {c_1}\).

Suy ra \({\Delta _{{c_2}}} = \left| {c - {c_2}} \right| < \left| {c - {c_1}} \right| = {\Delta _{{c_1}}}\). Vậy bạn Đức cho kết quả chính xác hơn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai

b) Sai

c) Đúng

d) Đúng

a) Kết quả là 2,65.

b) Kết quả là 0,3.

c) Số quy tròn của \(a\) là 1624000.

d) \(\bar a = 3,26356 \pm 0,001 \Rightarrow \) Độ chính xác đến hàng phần nghìn (độ chính xác là \(d = 0,001\)). Ta quy tròn đến hàng phần trăm. Vậy số quy tròn của \(a\) là 3,26.

Lời giải

Sử dụng máy tính cầm tay, ta có: \(\sqrt 3  = 1,732050808 \ldots ;\frac{{33}}{{19}} = 1,736842105 \ldots \)

Sai số tuyệt đối của số gần đúng là

\(\begin{array}{l}\left| {\sqrt 3  - \frac{{33}}{{19}}} \right| = |1,732050808 \ldots  - 1,736842105 \ldots |\\ = 1,736842105 \ldots  - 1,732050808 \ldots  < 1,737 - 1,732 = 0,005.\end{array}\)

Lưu ý: Trong đánh giá trên, một số học sinh không hiểu đánh giá cuối cùng, vì sao có \(1,736842105 \ldots  - 1,732050808 \ldots  < 1,737 - 1,732 = 0,005\)?

Giải đáp: Ta có: 1,736842105<1,73711,732050808>1,7321,732050808<1,7322

cộng theo vế (1) và \((2)\) ta được: \(1,736842105 \ldots  - 1,732050808 \ldots  < 1,737 - 1,732 = 0,005\).

Câu 4

A. \[0,01\% \].                
B. \[0,03\% \].              
C. \[0,04\% \].                                     
D. \[0,05\% \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP