Bạn Minh có 200 000 đồng. Bạn Minh mua một cây thước kẻ giá 6 000 đồng và một số quyển vở với giá 9 000 đồng. Giả sử \[x\,\,\left( {x \in {\mathbb{N}^*}} \right)\] là số quyển vở bạn Minh đã mua thì \[x\] phải thỏa mãn bất phương trình nào sau đây?
Quảng cáo
Trả lời:

Chọn D
Giả sử \[x\,\,\left( {x \in {\mathbb{N}^*}} \right)\] là số quyển vở bạn Minh đã mua.
Khi đó tổng số tiền bạn Minh mua vở là \[9\,\,000x\] (đồng).
Suy ra tổng số tiền bạn Minh mua vở và thước kẻ là \[9\,\,000x + 6\,\,000\] (đồng).
Vì bạn Minh chỉ có 200 000 đồng nên số tiền bạn Minh mua đồ không được lớn hơn số tiền bạn Minh có, do đó ta có bất phương trình \[9\,\,000x + 6\,\,000 \le 200\,\,000.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điều kiện xác định: \(x \ne - 2\)
Giải phương trình:
\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)
\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)
\({x^3} + 8 + {x^2} - 2x + 4 = 12\)
\({x^3} + {x^2} - 2x = 0\)
\(x\left( {{x^2} + x - 2} \right) = 0\)
\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)
\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)
\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x = - 2\) (không thỏa mãn).
a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)
c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)
d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).
Lời giải
Gọi \[x\] là số km mà hành khách có thể di chuyển \[\left( {x \ge 1} \right)\].
Số tiền hành khách cần trả cho 1 km đầu tiên là \[15\,\,000\] đồng và số tiền hành khách trả cho \(x - 1\) (km) tiếp theo là \(12\,\,000\left( {x - 1} \right)\) (đồng).
Số tiền hành khách cần trả khi đi \(x\) (km) là \[15\,\,000 + 12\,\,000\left( {x - 1} \right)\] (đồng).
Vì hành khách chỉ có thể di chuyển với số tiền \[350\,\,000\] đồng nên ta có bất phương trình
\[15\,\,000 + 12\,\,000\left( {x - 1} \right) \le 350\,\,000\]
\[15\,\,000 + 12\,\,000x - 12\,\,000 \le 350\,\,000\]
\[12\,\,000x \le 347\,\,000\]
\[x \le \frac{{347\,\,000}}{{12\,\,000}} = \frac{{347}}{{12}} \approx 28,92.\]
So với điều kiện \[x > 0,\] và số ki-lô-mét là số nguyên nên \(x = 28.\)
Vậy với \[350\,\,000\] đồng thì hành khách có thể di chuyển được tối đa 28 ki-lô-mét.
Đáp án: 28.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \(x + 5 = x - 3\).
B. \(\left( {x + 5} \right)\left( {x - 3} \right) = 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Vậy nghiệm của phương trình đã cho là \(x = 0\).
B. Vậy nghiệm của phương trình đã cho là \(x = - \frac{3}{2}\).
C. Vậy nghiệm của phương trình đã cho là \(x = 0;\) \(x = - \frac{3}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.