Câu hỏi:

13/10/2025 7 Lưu

Bạn Minh có 200 000 đồng. Bạn Minh mua một cây thước kẻ giá 6 000 đồng và một số quyển vở với giá 9 000 đồng. Giả sử \[x\,\,\left( {x \in {\mathbb{N}^*}} \right)\] là số quyển vở bạn Minh đã mua thì \[x\] phải thỏa mãn bất phương trình nào sau đây?

A. \[6\,\,000x + 9\,\,000 \ge 200\,\,000.\]  
B. \[9\,\,000x + 6\,\,000 \ge 200\,\,000.\]
C. \[6\,\,000x + 9\,\,000 \le 200\,\,000.\]              
D. \[9\,\,000x + 6\,\,000 \le 200\,\,000.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Giả sử \[x\,\,\left( {x \in {\mathbb{N}^*}} \right)\] là số quyển vở bạn Minh đã mua.

Khi đó tổng số tiền bạn Minh mua vở là \[9\,\,000x\] (đồng).

Suy ra tổng số tiền bạn Minh mua vở và thước kẻ là \[9\,\,000x + 6\,\,000\] (đồng).

Vì bạn Minh chỉ có 200 000 đồng nên số tiền bạn Minh mua đồ không được lớn hơn số tiền bạn Minh có, do đó ta có bất phương trình \[9\,\,000x + 6\,\,000 \le 200\,\,000.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Điều kiện xác định: \(x \ne  - 2\)

Giải phương trình:

\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)

\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)

\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)

\({x^3} + 8 + {x^2} - 2x + 4 = 12\)

\({x^3} + {x^2} - 2x = 0\)

\(x\left( {{x^2} + x - 2} \right) = 0\)

\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)

\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)

\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)

\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)

\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x =  - 2\) (không thỏa mãn).

a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne  - 2\).

b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)

c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)

d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).

Lời giải

Gọi \[x\] là số km mà hành khách có thể di chuyển \[\left( {x \ge 1} \right)\].

Số tiền hành khách cần trả cho 1 km đầu tiên là \[15\,\,000\] đồng và số tiền hành khách trả cho \(x - 1\) (km) tiếp theo là \(12\,\,000\left( {x - 1} \right)\) (đồng).

Số tiền hành khách cần trả khi đi \(x\) (km) là \[15\,\,000 + 12\,\,000\left( {x - 1} \right)\] (đồng).

Vì hành khách chỉ có thể di chuyển với số tiền \[350\,\,000\] đồng nên ta có bất phương trình

\[15\,\,000 + 12\,\,000\left( {x - 1} \right) \le 350\,\,000\]

\[15\,\,000 + 12\,\,000x - 12\,\,000 \le 350\,\,000\]

\[12\,\,000x \le 347\,\,000\]

\[x \le \frac{{347\,\,000}}{{12\,\,000}} = \frac{{347}}{{12}} \approx 28,92.\]

So với điều kiện \[x > 0,\] và số ki-lô-mét là số nguyên nên \(x = 28.\)

Vậy với \[350\,\,000\] đồng thì hành khách có thể di chuyển được tối đa 28 ki-lô-mét.

Đáp án: 28.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(x + 5 = x - 3\).

B. \(\left( {x + 5} \right)\left( {x - 3} \right) = 1\).              

C. \(\left( {x + 5} \right)\left( {x - 3} \right) = 0\). 
D. \(\left( {x + 5} \right)\left( {x - 3} \right) \ne 0\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Vậy nghiệm của phương trình đã cho là \(x = 0\).

B. Vậy nghiệm của phương trình đã cho là \(x =  - \frac{3}{2}\).

C. Vậy nghiệm của phương trình đã cho là \(x = 0;\) \(x =  - \frac{3}{2}\).      

D. Vậy phương trình vô nghiệm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP