Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Cho phương trình \(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\).
a) Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} + 2x + 4} \right)\).
c) Phương trình đã cho có ba nghiệm.
d) Tất cả các nghiệm của phương trình đã cho đều có giá trị nguyên dương.
Quảng cáo
Trả lời:

Điều kiện xác định: \(x \ne - 2\)
Giải phương trình:
\(1 + \frac{1}{{2 + x}} = \frac{{12}}{{{x^3} + 8}}\)
\(\frac{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} + \frac{{{x^2} - 2x + 4}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}} = \frac{{12}}{{\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right)}}\)
\(\left( {2 + x} \right)\left( {{x^2} - 2x + 4} \right) + {x^2} - 2x + 4 = 12\)
\({x^3} + 8 + {x^2} - 2x + 4 = 12\)
\({x^3} + {x^2} - 2x = 0\)
\(x\left( {{x^2} + x - 2} \right) = 0\)
\(x\left( {{x^2} - x + 2x - 2} \right) = 0\)
\(x\left[ {x\left( {x - 1} \right) + 2\left( {x - 1} \right)} \right] = 0\)
\(x\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
\(x = 0\) hoặc \(x - 1 = 0\) hoặc \(x + 2 = 0\)
\(x = 0\) (thỏa mãn) hoặc \(x = 1\) (thỏa mãn) hoặc \(x = - 2\) (không thỏa mãn).
a) Đúng. Điều kiện xác định của phương trình đã cho là \(x \ne - 2\).
b) Sai. Khi quy đồng mẫu, mẫu thức chung của hai vế phương trình đã cho là \(\left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right).\)
c) Sai. Phương trình đã cho có hai nghiệm là \(x = 0;\,\,x = 1.\)
d) Sai. Hai nghiệm này có giá trị không phải nguyên dương là \(x = 0\).
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. \[{a^2} < ab\] và \[{a^3} > {b^3}\].
B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Lời giải
Chọn B
Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].
Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].
Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].
Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].
Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].
Câu 2
Lời giải
Chọn B
Ta có \[{x^3} + 27 = \left( {x + 3} \right)\left( {{x^2} - 3x + 9} \right)\].
Ta thấy rằng \[{x^2} - 3x + 9 = {\left( {x - \frac{3}{2}} \right)^2} + \frac{{27}}{4} \ne 0\] với mọi \[x \in \mathbb{R}.\]
Điều kiện xác định của phương trình đã cho là: \[x + 3 \ne 0\], tức là \[x \ne - 3.\]
Câu 3
A. \[{\left( {x + y} \right)^2} \le 4xy\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. \[5x + 7 < 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \[x > 1\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. \[x > - 4\,;\,\,x > \frac{7}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.