Câu hỏi:

13/10/2025 5 Lưu

Bác An có \(500\,\,000\) đồng. Bác muốn mua một túi nước giặt \(190\,\,000\) đồng, một chai nước xả vải \(110\,\,000\) đồng và một số chai nước rửa tay, mỗi chai có giá \(45\,\,000\) đồng. Hỏi Bác An mua được nhiều nhất bao nhiêu chai nước rửa tay?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi số chai nhiều nhất bác An mua được là \(x\) (chai) \(\left( {x \in {\mathbb{N}^*}} \right)\)

Theo bài ra ta có: \(45\,\,000x + 190\,\,000 + 110\,\,000 \le 500\,\,000\)

\(45\,\,000x + 300\,\,000 \le 500\,\,000\)

\(45\,\,000x \le 200\,\,000\)

\(x \le \frac{{40}}{9} = 4,44....\).

Mà \(x\) lớn nhất, \(x \in {\mathbb{N}^*}\) nên \(x = 4\).

Vậy bác An mua được nhiều nhất \(4\) chai.

Đáp án: 4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[{a^2} < ab\] và \[{a^3} > {b^3}\]. 

B. \[{a^2} > ab\] và \[{a^3} > {b^3}\].

C. \[{a^2} < ab\] và \[{a^3} < {b^3}\]. 
D. \[{a^2} > ab\] và \[{a^3} < {b^3}\].

Lời giải

Chọn B

Với \[a > b > 0\] ta có: \[a \cdot a > a \cdot b\] hay \[{a^2} > ab\].

Ta có: \[{a^2} > ab\] nên \[{a^2} \cdot a > a \cdot ab\] hay \[{a^3} > {a^2}b\].

Mà \[a > b > 0\] nên \[ab > {b^2}\] suy ra \[{a^2}b > {b^3}\].

Khi đó \[{a^3} > {a^2}b > {b^3}\] hay \[{a^3} > {b^3}\].

Vậy \[{a^2} > ab\] và \[{a^3} > {b^3}\].

Câu 2

A. \[5x + 7 < 0\].    

B. \[0x + 6 > 0\].   
C. \[{x^2} - 2x > 0\].    
D. \[x - 10 = 3\].

Lời giải

Chọn A

Dựa vào định nghĩa bất phương trình bậc nhất một ẩn ta có:

Đáp án A là bất phương trình bậc nhất một ẩn.

Đáp án B không phải bất phương trình bậc nhất một ẩn vì \[a = 0\].

Đáp án C không phải là bất phương trình bậc nhất vì có \[{x^2}\].

Đáp án D không phải bất phương trình vì đây là phương trình bậc nhất một ẩn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[x \ne 0\] và \[x \ne 3.\]  
B. \[x \ne  - 3.\]  
C. \[x \ne 3.\]    
D. \[x \in \mathbb{R}\,.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[{\left( {x + y} \right)^2} \le 4xy\].

B. \[{\left( {x + y} \right)^2} > 4xy\].   
C. \[{\left( {x + y} \right)^2} < 4xy\].
D. \[{\left( {x + y} \right)^2} \ge 4xy\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[7 - x < 2x\]. 

B. \[2x + 3 > 9\]. 
C. \[ - 4x \ge x + 5\]. 
D. \[5 - x > 6x - 12\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP