Câu hỏi:

16/10/2025 10 Lưu

Bác An dự định làm bốn mái nhà của một ngôi nhà sao cho chúng là bốn mặt bên của một hình chóp tứ giác đều và các mái kề nhau thì vuông góc với nhau. Hỏi ý tưởng đó có làm được không?

A red roof with a blue light from it

Description automatically generated

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A black background with a black square

Description automatically generated with medium confidence

Giả sử mái nhà của ngôi nhà được minh họa như hình vẽ trên. Ta gắn hệ trục tọa độ như hình vẽ.

Gọi các cạnh đáy của hình chóp có độ dài là \(a\) và các cạnh bên có độ dài là \(b\).

Vì \(ABCD\) là hình vuông cạnh \(a\) nên \(OA = OB = OC = OD = a\sqrt 2 \).

Vì \(SO\) là đường cao của tam giác \(SOC\)nên \(SO = \sqrt {S{C^2} - O{C^2}}  = \sqrt {{b^2} - \frac{{{a^2}}}{2}}  = \sqrt {\frac{{2{b^2} - {a^2}}}{2}} \).

Khi đó ta có: \(O\left( {0;0;0} \right);\,A\left( {\frac{{ - a\sqrt 2 }}{2};0;0} \right),C\left( {\frac{{a\sqrt 2 }}{2};0;0} \right),B\left( {0;\frac{{ - a\sqrt 2 }}{2};0} \right);D\left( {0;\frac{{a\sqrt 2 }}{2};0} \right)\) và \(S\left( {0;0;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right)\).

Ta có: \(\overrightarrow {SC}  = \left( {\frac{{a\sqrt 2 }}{2};0; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} } \right);\,\overrightarrow {DC}  = \left( {\frac{{a\sqrt 2 }}{2}; - \frac{{a\sqrt 2 }}{2};0} \right)\); \(\,\overrightarrow {BC}  = \left( {\frac{{a\sqrt 2 }}{2};\frac{{a\sqrt 2 }}{2};0} \right)\).

Mặt khác: \(\overrightarrow {{n_1}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {DC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \frac{{a\sqrt 2 }}{2}} \right)\);

\(\overrightarrow {{n_2}}  = \left[ {\overrightarrow {SC} ;\frac{{\sqrt 2 }}{a}\overrightarrow {BC} } \right] = \left( {\sqrt {\frac{{2{b^2} - {a^2}}}{2}} ; - \sqrt {\frac{{2{b^2} - {a^2}}}{2}} ;\frac{{a\sqrt 2 }}{2}} \right)\).

Mặt phẳng \(\left( {SCD} \right)\) nhận \(\overrightarrow {{n_1}} \) làm một vectơ pháp tuyến.

Mặt phẳng \(\left( {SBC} \right)\) nhận \(\overrightarrow {{n_2}} \) làm một vectơ pháp tuyến.

Vì \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = \frac{{ - {a^2}}}{2} \ne 0\) do đó hai mặt phẳng \(\left( {SCD} \right)\) và \(\left( {SBC} \right)\) không vuông góc với nhau.

Do đó ý tưởng trên không thực hiện được.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\)             \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\)          \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\)      \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c =  - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình tham số của đường cáp là: \[d:\left\{ \begin{array}{l}x =  - 2\\y = 1 - 2k\\z = 5 + 6k\end{array} \right.\begin{array}{*{20}{c}}{}&{\left( {k \in \mathbb{R}} \right)}\end{array}\]

Do tốc độ chuyển động của cabin là \(4\,{\rm{m/s}}\) nên độ dài \(AM = 4t\) \(\left( m \right)\).

Vì vậy sau \[5\] (s) kể từ lúc xuất phát, cabin đến điểm \[M\] thì \(AM = 4.5 = 20\) \(\left( m \right)\).

Vì \[M \in d \Rightarrow M\left( { - 2;1 - 2k;5 + 6k} \right)\].

\[\overrightarrow {AM}  = \left( {0; - 2k;6k} \right)\]. Do 2 vec tơ \[\overrightarrow {AM} ;\vec u\] cùng hướng \(k > 0\).

\(AM = 20 \Leftrightarrow \sqrt {{0^2} + 4{k^2} + 36{k^2}}  = 20 \Leftrightarrow 40{k^2} = 400 \Leftrightarrow k =  \pm \sqrt {10} \).

Vì \(k > 0 \Rightarrow k = \sqrt {10} \).

Vậy tọa độ \[M\left( { - 2;1 - 2\sqrt {10} ;5 + 6\sqrt {10} } \right)\]. Khi đó \[a + 3b + c =  - 2 + 3\left( {1 - 2\sqrt {10} } \right) + 5 + 6\sqrt {10}  = 6\].

Đáp án: 6.

Câu 3

A.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 8\).

B.

\({\left( {x - 2} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 2\).

C.

\({\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 2} \right)^2} = 8\).

D.

\({\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + {z^2} = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 9\).

B.

\({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 1} \right)^2} = 3\).

C.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 9\).

D.

\({\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 3\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP