Ông A dự định xây “tường cong” trong sân trượt patin là một khối bê tông có chiều cao từ mặt đất lên là 3,5 m. Giao của mặt tường cong và mặt đất là đoạn thẳng AB = 4m. Thiết diện của khối tường cong cắt bởi mặt phẳng vuông góc với AB tại A là một hình tam giác vuông cong ACE với AC = 4m, CE = 3,5m và cạnh cong AE nằm trên một đường parabol có trục đối xứng vuông góc với mặt đất. Tại vị trí M là trung điểm của AC thì đường cong có độ cao 1m (xem hình). Tính thể tích bê tông cần sử dụng để tạo nên khối tường cong đó.

Ông A dự định xây “tường cong” trong sân trượt patin là một khối bê tông có chiều cao từ mặt đất lên là 3,5 m. Giao của mặt tường cong và mặt đất là đoạn thẳng AB = 4m. Thiết diện của khối tường cong cắt bởi mặt phẳng vuông góc với AB tại A là một hình tam giác vuông cong ACE với AC = 4m, CE = 3,5m và cạnh cong AE nằm trên một đường parabol có trục đối xứng vuông góc với mặt đất. Tại vị trí M là trung điểm của AC thì đường cong có độ cao 1m (xem hình). Tính thể tích bê tông cần sử dụng để tạo nên khối tường cong đó.
Quảng cáo
Trả lời:

Chọn hệ trục Oxy như hình vẽ sao cho A ≡ O.
Suy ra cạnh cong AE nằm trên parabol \(\left( P \right):y = a{x^2} + bx + c\).
\(\left( P \right)\) đi qua các điểm \(\left( {0;0} \right),\left( {2;1} \right),\left( {4;\frac{7}{2}} \right)\) nên \(\left( P \right):y = \frac{3}{{16}}{x^2} + \frac{1}{8}x\).
Khi đó diện tích tam giác cong ACE có diện tích \(S = \int\limits_0^4 {\left( {\frac{3}{{16}}{x^2} + \frac{1}{8}x} \right)} dx = 5\) m2.
Vậy thể tích của khối bê tông cần sử dụng là V = 5.4 = 20 m3.
Trả lời: 20.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đưa hình vẽ về dạng của hàm số \(y = a\sqrt x \)
Chọn hệ trục Oxy với Ox đi qua chính giữa trục của mảnh đất (theo chiều của chiều cao), gốc tọa độ O cách điểm chính giữa của đoạn AB là 4, khi đó ta có \({y_B} = 4;{y_C} = 6\) nên B(4; 4), C(9; 6).
Do đó ta tìm được a = 2.
Suy ra \(S = 2\int\limits_4^9 {2\sqrt x dx} = \frac{{152}}{3} \approx 50,7\).
Trả lời: 50,7.
Lời giải
a) \(\int\limits_2^5 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_2^5 = f\left( 5 \right) - f\left( 2 \right)\).
b) \(\int\limits_2^3 {f'\left( x \right)dx} = \left. {f\left( x \right)} \right|_2^3 = f\left( 3 \right) - f\left( 2 \right) = - 1 - 0 = - 1\).
c) Có \(S = \int\limits_2^3 {\left| {f'\left( x \right)} \right|dx} = - \int\limits_2^3 {f'\left( x \right)dx} = \left. { - f\left( x \right)} \right|_2^3 = - f\left( 3 \right) + f\left( 2 \right) = 1 + 0 = 1\).
d) \(\int\limits_2^5 {\left| {f'\left( x \right)} \right|dx} = \int\limits_2^3 {\left| {f'\left( x \right)} \right|dx} + \int\limits_3^5 {\left| {f'\left( x \right)} \right|dx} \)\( = - \int\limits_2^3 {f'\left( x \right)dx} + \int\limits_3^5 {f'\left( x \right)dx} \)\( = 1 + \left. {f\left( x \right)} \right|_3^5 = 1 + f\left( 5 \right) - f\left( 3 \right) = 2 + f\left( 5 \right)\).
Mà \(\int\limits_2^5 {\left| {f'\left( x \right)} \right|dx} = 5\)\( \Leftrightarrow 2 + f\left( 5 \right) = 5 \Rightarrow f\left( 5 \right) = 3\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Cho hàm số \(f\left( x \right)\) xác định trên ℝ\{0} thỏa mãn \(f\left( x \right) = x + 5 - \frac{6}{x}\).
a) f(x) là một nguyên hàm của hàm số \(g\left( x \right) = 1 + \frac{6}{{{x^2}}}\).
b) \(\int {f\left( x \right)dx} = \frac{1}{2}{x^2} + 5x - 6\ln x + C\).
c) Gọi F(x) là một nguyên hàm của hàm số f(x) và thỏa mãn F(1) = 5. Khi đó \(F\left( 2 \right) = 5 + \int\limits_1^2 {f\left( x \right)dx} \).
d) Gọi G(x) là một nguyên hàm của hàm số f(x) thỏa mãn G(1) = 4 và G(2) + G(−1) = 5. Khi đó \(G\left( { - 6} \right) = - 13 - 6\ln 3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.