PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x}\) trên \(\left( { - \infty ;0} \right)\) thỏa mãn \(F\left( { - 2} \right) = 0\) (với C là một số thực bất kì).
a) \(F\left( { - 2e} \right) = 1\).
b) \(F\left( { - 3} \right) = \ln \frac{3}{2}\).
c) \(f\left( { - 4} \right) = \ln 2\).
d) \(F'\left( { - 1} \right) = - 1\).
PHẦN II. TRẮC NGHIỆM ĐÚNG – SAI
Hàm số \(F\left( x \right)\) là một nguyên hàm của hàm số \(f\left( x \right) = \frac{1}{x}\) trên \(\left( { - \infty ;0} \right)\) thỏa mãn \(F\left( { - 2} \right) = 0\) (với C là một số thực bất kì).
a) \(F\left( { - 2e} \right) = 1\).
b) \(F\left( { - 3} \right) = \ln \frac{3}{2}\).
c) \(f\left( { - 4} \right) = \ln 2\).
d) \(F'\left( { - 1} \right) = - 1\).
Quảng cáo
Trả lời:

Ta có \(F\left( x \right) = \int {\frac{1}{x}dx} = \ln \left| x \right| + C = \ln \left( { - x} \right) + C\) vì \(x \in \left( { - \infty ;0} \right)\).
Mà \(F\left( { - 2} \right) = 0\) nên \(\ln 2 + C = 0 \Rightarrow C = - \ln 2\). Do đó \(F\left( x \right) = \ln \left( { - x} \right) - \ln 2\).
a) \(F\left( { - 2e} \right) = \ln \left( {2e} \right) - \ln 2 = \ln 2 + 1 - \ln 2 = 1\).
b) \(F\left( { - 3} \right) = \ln 3 - \ln 2 = \ln \frac{3}{2}\).
c) \(f\left( { - 4} \right) = \frac{1}{{ - 4}} = - \frac{1}{4}\).
d) \(F'\left( { - 1} \right) = f\left( { - 1} \right) = - 1\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\left( {12{x^2} + 2} \right)dx} = 4{x^3} + 2x + C\).
Mà \(f\left( 1 \right) = 3 \Rightarrow C = - 3\). Do đó \(f\left( x \right) = 4{x^3} + 2x - 3\).
Lại có \(F\left( x \right) = \int {f\left( x \right)dx} = \int {\left( {4{x^3} + 2x - 3} \right)dx} = {x^4} + {x^2} - 3x + C\).
Mà \(F\left( 0 \right) = 2 \Rightarrow C = 2\). Do đó \(F\left( x \right) = {x^4} + {x^2} - 3x + 2\).
Vậy \(F\left( 1 \right) = {1^4} + {1^2} - 3.1 + 2 = 1\).
Trả lời: 1.
Lời giải
Số lượng vi sinh vật tại thời điểm \(x\) giờ chính là
\(f\left( x \right) = \int {f'\left( x \right)dx} = \int {\left( {{x^2} + 8x} \right)dx} = \frac{{{x^3}}}{3} + 4{x^2} + C\).
Có \(f\left( 3 \right) = 50\)\( \Rightarrow C = 5\).
Vậy \(f\left( x \right) = \frac{{{x^3}}}{3} + 4{x^2} + 5\).
Khi đó \(f\left( 6 \right) = \frac{{{6^3}}}{3} + {4.6^2} + 5 = 221\).
Trả lời: 221.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.