Câu hỏi:

16/10/2025 22 Lưu

Cho hàm số \(y = f\left( x \right)\) có đạo hàm là \(f'\left( x \right) = 12{x^2} + 2,\forall x \in \mathbb{R}\)\(f\left( 1 \right) = 3\). Biết \(F\left( x \right)\) là nguyên hàm của \(f\left( x \right)\) thỏa mãn \(F\left( 0 \right) = 2\). Tính \(F\left( 1 \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\left( {12{x^2} + 2} \right)dx}  = 4{x^3} + 2x + C\).

Mà \(f\left( 1 \right) = 3 \Rightarrow C =  - 3\). Do đó \(f\left( x \right) = 4{x^3} + 2x - 3\).

Lại có \(F\left( x \right) = \int {f\left( x \right)dx}  = \int {\left( {4{x^3} + 2x - 3} \right)dx}  = {x^4} + {x^2} - 3x + C\).

Mà \(F\left( 0 \right) = 2 \Rightarrow C = 2\). Do đó \(F\left( x \right) = {x^4} + {x^2} - 3x + 2\).

Vậy \(F\left( 1 \right) = {1^4} + {1^2} - 3.1 + 2 = 1\).

Trả lời: 1.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số lượng vi sinh vật tại thời điểm \(x\) giờ chính là

\(f\left( x \right) = \int {f'\left( x \right)dx}  = \int {\left( {{x^2} + 8x} \right)dx}  = \frac{{{x^3}}}{3} + 4{x^2} + C\).

Có \(f\left( 3 \right) = 50\)\( \Rightarrow C = 5\).

Vậy \(f\left( x \right) = \frac{{{x^3}}}{3} + 4{x^2} + 5\).

Khi đó \(f\left( 6 \right) = \frac{{{6^3}}}{3} + {4.6^2} + 5 = 221\).

Trả lời: 221.

Lời giải

a) \(v\left( t \right) = \int {a\left( t \right)dt}  = \int {4\cos t} dt = 4\sin t + C\).

Mà \(v\left( 0 \right) = 0 \Rightarrow 4\sin 0 + C = 0 \Rightarrow C = 0\).

Khi đó \(v\left( t \right) = 4\sin t\) m/s.

b) \(v\left( {\frac{\pi }{6}} \right) = 4\sin \frac{\pi }{6} = 2\) m/s.

c) \(v\left( {\frac{\pi }{4}} \right) = 4\sin \frac{\pi }{4} = 2\sqrt 2 \) m/s.

d) \(a\left( {\frac{\pi }{4}} \right) = 4\cos \frac{\pi }{4} = 2\sqrt 2 \) m/s2.

Đáp án: a) Sai; b) Đúng;   c) Sai; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP