Câu hỏi:

16/10/2025 269 Lưu

Trong không gian hệ trục tọa độ \(Oxyz\) (đơn vị trên mỗi trục là kilômét), đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\,{\rm{km}}\). Một máy bay đang chuyển động với vận tốc \(900\,\)km/h theo đường thẳng \(d\) có phương trình \[\left\{ \begin{array}{l}x = - 1000 + 100t\\y = - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] và hướng về đài kiểm soát không lưu (như hình vẽ).

index_html_65c0761531b6a662.png

(a) Ranh giới vùng phát sóng bên ngoài của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(300\,\,{\rm{km}}\).

(b) Phương trình mặt cầu để mô tả ranh giới bên ngoài vùng phát sóng của đài kiểm soát không lưu trong không gian là \({x^2} + {y^2} + {z^2} = 360000\).

(c) Máy bay đang chuyển động theo đường thẳng \(d\) đến vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\). Vị trí này nằm ngoài vùng kiểm soát không lưu của đài kiểm soát không lưu sân bay.

(d) Thời gian kể từ khi đài kiểm soát không lưu phát hiện máy bay đến khi máy bay ra khỏi vùng kiểm soát không lưu là \(\frac{4}{3}\)giờ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Vì đài kiểm soát không lưu của một sân bay ở vị trí \(O\left( {0;0;0} \right)\) và được thiết kế phát hiện máy bay ở khoảng cách tối đa \(600\)km nên ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu có bán kính bằng \(600\)km.

b) Đúng. Ranh giới vùng phát sóng của đài kiểm soát không lưu trong không gian là mặt cầu tâm \(O\left( {0\,;\,0\,;\,0} \right)\) có bán kính bằng \(R = 600\,\)có phương trình là: \({x^2} + {y^2} + {z^2} = 360000\).

c) Đúng. Ta có \(OM = \sqrt {{{\left( { - 500} \right)}^2} + {{\left( {100} \right)}^2} + {{\left( {100\sqrt {11} } \right)}^2}} \approx 608 > 600 = R\).

Vậy, tại vị trí điểm \(M\left( { - 500\,;\,100\,;\,100\sqrt {11} } \right)\) máy bay nằm ngoài vùng kiểm soát không không lưu của đài kiểm soát không lưu sân bay.

d) Sai. Thay \[d:\left\{ \begin{array}{l}x = - 1000 + 100t\\y = - 300 + 80t\\z = 100\sqrt {11} \end{array} \right.\left( {t \in \mathbb{R}} \right)\] vào phương trình mặt cầu \({x^2} + {y^2} + {z^2} = 360000\):

\(\begin{array}{l}{\left( {100t - 1000} \right)^2} + {\left( {80t - 300} \right)^2} + {\left( {100\sqrt {11} } \right)^2} = 360000\\ \Leftrightarrow 164{t^2} - 2480t + 8400 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 10 \Rightarrow B\left( {0\,;\,500\,;\,100\sqrt {11} } \right)\\t = \frac{{210}}{{41}} \Rightarrow C\left( { - \frac{{20000}}{{41}}\,;\,\frac{{4500}}{{41}}\,;\,100\sqrt {11} } \right)\end{array} \right.\end{array}\)

Quãng đường máy bay di chuyển trong vùng kiểm soát không lưu là:

\(BC = \sqrt {{{\left( { - \frac{{20000}}{{41}}} \right)}^2} + {{\left( {\frac{{4500}}{{41}} - 500} \right)}^2} + {{\left( {100\sqrt {11} - 100\sqrt {11} } \right)}^2}} \approx 625\,\)km.

Vậy thời gian máy bay di chuyển theo đường thẳng \(d\) và trong phạm vi kiểm soát không lưu của sân bay là: \(\frac{{625}}{{900}} = \frac{{25}}{{36}}\) giờ.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).

Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).

\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]

Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].

Đáp án: 2,45.

Câu 5

Một khu bảo tồn thiên nhiên có hai trạm kiểm lâm và một trạm quan sát. Trong hệ toạ độ \(Oxyz\) (đơn vị độ dài trên mỗi trục là kilômét), hai trạm kiểm lâm và trạm quan sát có vị trí lần lượt là \(A\left( {10;5;0} \right)\), \(B\left( {70;85;0} \right)\) và \(I\left( {20;65;0,2} \right)\). Một thiết bị bay không người lái (drone) được thiết kế bay trên đường thẳng đi qua hai điểm \(C\left( {10;5;0,1} \right)\) và \(D\left( {70;85;0,1} \right)\) để truyền tín hiệu và dữ liệu về trạm quan sát \(I\).

(a)Khi tín hiệu gửi về trạm quan sát nhanh nhất thì vị trí của drone là \[K\left( {\frac{{212}}{5};\frac{{241}}{5};0,1} \right)\].

(b)Cùng một thời điểm, một xe máy xuất phát từ \(A\) đi đến \(B\) với vận tốc \(40\)km/h và một ô tô xuất phát từ \(B\) đi đến \(A\) với vận tốc \(60\)km/h, sau đó gặp nhau tại \(M\). Drone phải di chuyển trước đến vị trí \(H\) có hình chiếu trên \[AB\] là \(M\)để truyền dữ liệu về trạm quan sát \(I\). Khi đó vị trí của drone là \[\left( {34;37;0,1} \right)\].

(c)Trạm quan sát \(I\) nhìn đoạn thẳng \(AB\) dưới một góc nhỏ hơn \(65^\circ \).

(d)Phương trình đường thẳng mô tả cho tuyến đường bay của drone là \(\left\{ {\begin{array}{*{20}{l}}{x = 10 + 3t}\\{y = 5 + 4t}\\{z = 0,1}\end{array}} \right.\left( {t \in \mathbb{R}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP