Câu hỏi:

16/10/2025 125 Lưu

Biết góc quan sát ngang của một camera là \(116^\circ \). Trong không gian \(Oxyz\), camera được đặt tại điểm \(A\left( {2;1;5} \right)\) và chiếu thẳng về phía mặt phẳng \(\left( P \right):2x - y - 2z + 13 = 0\). Hỏi vùng quan sát được trên mặt phẳng \(\left( P \right)\) của camera là hình tròn có đường kính bằng bao nhiêu? (làm tròn kết quả đến chữ số hàng chục).

index_html_456bed7d130b3760.png

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

6,4

Gọi \(A,B,C\) là các điểm như hình vẽ bên dưới và \(H\) là hình chiếu vuông góc của \(A\) lên mặt phẳng \(\left( P \right)\).

Hình vẽ minh hoạ

index_html_443209b9579f8070.png

Theo đề \(\widehat {BAC} = 116^\circ \Rightarrow \widehat {BAH} = 58^\circ \). Khi đó \(AH = {\rm{d}}\left( {A,\left( P \right)} \right) = \frac{{\left| {2 \cdot 2 - 1 - 2 \cdot 5 + 13} \right|}}{{\sqrt {4 + 1 + 4} }} = 2\) (đvđd).

Xét tam giác \(ABH\) vuông tại \(H\), ta có: \(\tan \widehat {BAH} = \frac{{BH}}{{AH}} \Rightarrow BH = \tan 58^\circ \cdot 2 = 2\tan 58^\circ \) (đvđd).

Suy ra \(BC = 2BH = 2 \cdot 2\tan 58^\circ \approx 6,4\)(đvđd).

Vậy vùng quan sát của camera trên mặt phẳng \(\left( P \right)\) là hình tròn có đường kính khoảng \(6,4\) (đvđd).

Đáp án: 6,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Chọn hệ trục Oxyz với gốc \(O\) đặt tại điểm xuất phát của hai flycam, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất với trục Ox hướng về phía Nam, trục Oy hướng về phía Đông và trục Oz hướng thẳng đứng lên trời, đơn vị đo lấy theo mét.

Gọi \(A,B,M\) lần lượt là vị trí của flycam thứ nhất, flycam thứ hai và người quan sát.

Khi đó \(A\left( {300;100;100} \right),B\left( { - 200; - 100;50} \right),M\left( {a;b;0} \right)\).

Gọi \(B'\) là điểm đối xứng của \(B\) qua mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(B'\left( { - 200; - 100; - 50} \right)\).

Ta có \(MA + MB = MA + MB' \ge AB'\).

Do đó \(MA + MB\) nhỏ nhất khi bằng \(AB'\) hay \(M\) là giao điểm của \(AB'\) với mặt phẳng \(\left( {Oxy} \right)\).

Suy ra \(A,B',M\) thẳng hàng hay \(\overrightarrow {AM} ,\overrightarrow {AB'} \) cùng phương.

Có \(\left\{ {\begin{array}{*{20}{l}}{\overrightarrow {AM} = \left( {a - 300;b - 100; - 100} \right)}\\{\overrightarrow {AB'} \left( { - 500; - 200; - 150} \right)}\end{array}} \right.\).

\( \Rightarrow \frac{{a - 300}}{{ - 500}} = \frac{{b - 100}}{{ - 200}} = \frac{{ - 100}}{{ - 150}} = \frac{2}{3} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{{100}}{3}}\\{b = - \frac{{100}}{3}}\end{array}} \right.\).

Suy ra \(M\left( { - \frac{{100}}{3}; - \frac{{100}}{3};0} \right)\).

Vậy khoảng cách từ vị trí người quan sát đến địa điểm xuất phát của hai chiếc flycam là: \(OM = \frac{{100\sqrt 2 }}{3} \approx 47\).

Đáp án : 47.