Câu hỏi:

16/10/2025 28 Lưu

Tại một nút giao thông có \[2\] con đường khác mức. Trên thiết kế, trong không gian Oxyz hai con đường đó thuộc hai đường thẳng \({d_1}:\frac{{x - 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}\); \({d_2}:\frac{{x - 2}}{1} = \frac{{y + 1}}{2} = \frac{z}{{ - 3}}\).

Picture 2

Người ta muốn tạo một con đường \(\Delta \) cắt \({d_1},\,{d_2}\) lần lượt tại \(A\) và \(B\) sao cho \(AB\) nhỏ nhất. Tính độ dài \(AB\), kết quả làm tròn đến hàng phần trăm.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án:

2,45

Ta có \(AB\) ngắn nhất khi \(AB\) là đoạn vuông góc chung của \({d_1}\) và \({d_2}\).

Gọi \(A\left( {2 + a;2 + a; - a} \right) \in {d_1};\,\,B\left( {2 + b; - 1 + 2b; - 3b} \right) \in {d_2}\)\( \Rightarrow \overrightarrow {AB} \left( {b - a;2b - a - 3; - 3b + a} \right)\).

\({d_1},\,{d_2}\) lần lượt có các véc tơ chỉ phương là \({\vec u_{{d_1}}} = \left( {1;1; - 1} \right)\) và \({\vec u_{{d_2}}} = \left( {1;2; - 3} \right)\)

Ta có: \[\left\{ \begin{array}{l}\overrightarrow {AB} .{{\vec u}_{{d_1}}} = 0\\\overrightarrow {AB} .{{\vec u}_{{d_2}}} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1\left( {b - a} \right) + 1\left( {2b - a - 3} \right) - 1\left( { - 3b + a} \right) = 0\\1\left( {b - a} \right) + 2\left( {2b - a - 3} \right) - 3\left( { - 3b + a} \right) = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}6b - 3a - 3 = 0\\14b - 6a - 6 = 0\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}A\left( {1;1;1} \right)\\B\left( {2; - 1;0} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {1; - 2; - 1} \right)\]

Do đó \[\left| {\overrightarrow {AB} } \right| = \sqrt 6 \approx 2,45\].

Đáp án: 2,45.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(M\left( {a;b;c} \right)\). Khi đó ta có:

\({\left( {a + 1} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 3} \right)^2} = 36 \Leftrightarrow {a^2} + {b^2} + {c^2} + 2a - 12b - 6c + 10 = 0\) \(\left( 1 \right)\)

\({\left( {a - 4} \right)^2} + {\left( {b - 8} \right)^2} + {\left( {c - 1} \right)^2} = 49 \Leftrightarrow {a^2} + {b^2} + {c^2} - 8a - 16b - 2c + 32 = 0\) \(\left( 2 \right)\)

\({\left( {a - 9} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 7} \right)^2} = 144 \Leftrightarrow {a^2} + {b^2} + {c^2} - 18a - 12b - 14c + 22 = 0\) \(\left( 3 \right)\)

\({\left( {a + 15} \right)^2} + {\left( {b - 18} \right)^2} + {\left( {c - 7} \right)^2} = 576 \Leftrightarrow {a^2} + {b^2} + {c^2} + 30a - 36b - 14c + 22 = 0\) \(\left( 4 \right)\)

Giải hệ gồm 4 phương trình trên ta được \(a = 1;b = 2;c = - 1\) nên \(M\left( {1;2; - 1} \right)\).

Vậy \(T = 1 + 2 + \left( { - 1} \right) = 2\).

Đáp án: 2.

Lời giải

Phương trình mặt cầu \(\left( S \right):\,{x^2} + {y^2} + {z^2} = 36\).

Ta có \(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \).

Áp dụng bất đẳng thức Minkowski ta có:

\(MA + MB = \sqrt {{{\left( {x - 26} \right)}^2} + {y^2} + {z^2}} + \sqrt {{x^2} + {{\left( {y - 26} \right)}^2} + {z^2}} \)\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2} + 4{z^2}} \)

\( \ge \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \).

Điều kiện để \(MA + MB = \sqrt {{{\left( {x + y - 52} \right)}^2} + {{\left( {x + y} \right)}^2}} \) là khi \(z = 0\), khi đó \(\,{x^2} + {y^2} = 36\)

Mặt khác, vì \(M\left( {x;y;z} \right)\) thuộc mặt cầu tâm \(O\), bán kính bằng 6 nên \( - 6 \le x;y;z \le 6\) dó đó \(x + y > - 12\).

Áp dụng bất đẳng thức Bunhiacopxki, ta có \(x + y \le \sqrt {\left( {{1^2} + {1^2}} \right)\left( {{x^2} + {y^2}} \right)} = \sqrt {2.36} = 6\sqrt 2 \).

Đặt \(t = x + y \Rightarrow - 12 < t \le 6\sqrt 2 \), khi đó \(f\left( t \right) = MA + MB = \sqrt {{{\left( {t - 52} \right)}^2} + {t^2}} = \sqrt {2{t^2} - 104t + {{52}^2}} \).

\(f'\left( t \right) = \frac{{2t - 52}}{{\sqrt {2{t^2} - 104t + {{52}^2}} }}\).

Dễ thấy hàm số \[f'\left( t \right) \le 0\,\]khi \( - 12 < t \le 6\sqrt 2 \). Do đó \(f\left( t \right)\) đạt giá trị nhỏ nhất trên \( - 12 < t \le 6\sqrt 2 \) khi \(t = 6\sqrt 2 \) và bằng \(f\left( {6\sqrt 2 } \right) = \sqrt {2{t^2} - 104t + {{52}^2}} = \sqrt {2776 - 624\sqrt 2 } \approx 44\).

Đáp án: 44 .