PHẦN III. TRẢ LỜI NGẮN
Cho điểm A(1; 2; −1) và mặt phẳng (α): x – 2y + 2z + 2 = 0. Mặt phẳng (β): x – by + cz + d = 0 song song với mặt phẳng (α) và cách A một khoảng bằng 1. Tính 3b – c + d.
PHẦN III. TRẢ LỜI NGẮN
Cho điểm A(1; 2; −1) và mặt phẳng (α): x – 2y + 2z + 2 = 0. Mặt phẳng (β): x – by + cz + d = 0 song song với mặt phẳng (α) và cách A một khoảng bằng 1. Tính 3b – c + d.
Quảng cáo
Trả lời:
Vì (β) // (α) nên (β): x – 2y + 2z + d = 0 (d ≠ 2).
Khoảng cách từ M đến (β) bằng 1 nên \(\frac{{\left| {1 - 2.2 + 2\left( { - 1} \right) + d} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} }} = 1 \Leftrightarrow \left| {d - 5} \right| = 3\)\( \Leftrightarrow \left[ \begin{array}{l}d = 8\left( {TM} \right)\\d = 2\left( {KTM} \right)\end{array} \right.\).
Vậy (β): x – 2y + 2z + 8 = 0. Suy ra b = 2; c = 2; d = 8.
Do đó 3b – c + d = 3.2 – 2 + 8 = 12.
Trả lời: 12.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn C
Mặt phẳng đi qua M và song song với mặt phẳng (P) nhận \(\overrightarrow {{n_P}} = \left( {3; - 2;1} \right)\) làm vectơ pháp tuyến có phương trình là \(3\left( {x - 2} \right) - 2\left( {y + 1} \right) + \left( {z - 4} \right) = 0\) Û 3x – 2y + z – 12 = 0.
Lời giải
a) Ta có \(\overrightarrow {AB} = \left( {0; - 3;2} \right),\overrightarrow {AC} = \left( {1; - 2;1} \right)\). Hai vectơ này không cùng phương.
Do đó ba điểm A, B, C không thẳng hàng.
b) Do ba điểm A, B, C không thẳng hàng nên tồn tại một mặt phẳng duy nhất qua ba điểm này.
c) Ta có mặt phẳng (ABC) có một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1;2;3} \right)\).
d) Mặt phẳng (ABC) đi qua điểm A(1; 1; 1) và nhận vectơ \(\overrightarrow n = \left( {1;2;3} \right)\) làm một vectơ pháp tuyến có phương trình là \(\left( {x - 1} \right) + 2\left( {y - 1} \right) + 3\left( {z - 1} \right) = 0\) \( \Leftrightarrow x + 2y + 3z - 6 = 0\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.