Mặt cầu có tâm I(1; −2; 3) và tiếp xúc với mặt phẳng (Oyz) là
Quảng cáo
Trả lời:

Chọn C
Phương trình mặt phẳng (Oyz): x = 0.
Ta có \(R = d\left( {I,\left( {Oyz} \right)} \right) = 1\).
Phương trình mặt cầu cần tìm là \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 1\) \( \Leftrightarrow {x^2} + {y^2} + {z^2} - 2x + 4y - 6z + 13 = 0\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Mặt cầu (S) có tâm I(−2; 1; 0) và bán kính R = 2.
Suy ra đường kính mặt cầu bằng 2R = 4.
b) Có \(IA = \sqrt {{{\left( { - 1 + 2} \right)}^2} + {{\left( {3 - 1} \right)}^2} + {0^2}} = \sqrt 5 > R\) nên mặt cầu (S) không đi qua điểm A.
c) Mặt phẳng (Oyz) có phương trình \(x = 0\).
Khi đó \(d\left( {I,\left( {Oyz} \right)} \right) = \left| { - 2} \right| = 2\).
d) Ta có \(d\left( {I,\left( P \right)} \right) = \frac{{\left| { - 2 + 2.1 - 2.0 - 2} \right|}}{{\sqrt {{1^2} + {2^2} + {{\left( { - 2} \right)}^2}} }} = \frac{2}{3} < R\)nên mặt phẳng (P) không tiếp xúc với mặt cầu (S).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Sai.
Câu 2
Trong không gian tọa độ Oxyz, cho mặt cầu (S): \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\).
a) Đường thẳng d đi qua M(4; −1; 0) và có một vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 1;1} \right)\).
b) Mặt cầu (S) có tâm I(0; 0; 0), R = 2.
c) Đường thẳng d cắt mặt cầu (S) tâm I cắt tại hai điểm phân biệt.
d) Tọa độ giao điểm của đường thẳng d với mặt cầu là A(3; 0; 0), B(1; 2; 0).
Trong không gian tọa độ Oxyz, cho mặt cầu (S): \({\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\)và đường thẳng \(d:\left\{ \begin{array}{l}x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\).
a) Đường thẳng d đi qua M(4; −1; 0) và có một vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 1;1} \right)\).
b) Mặt cầu (S) có tâm I(0; 0; 0), R = 2.
c) Đường thẳng d cắt mặt cầu (S) tâm I cắt tại hai điểm phân biệt.
d) Tọa độ giao điểm của đường thẳng d với mặt cầu là A(3; 0; 0), B(1; 2; 0).
Lời giải
a) Đường thẳng d đi qua M(4; −1; 0) và có một vectơ chỉ phương là \(\overrightarrow u = \left( {1; - 1;0} \right)\).
b) Mặt cầu (S) có tâm I(1; 0; 0), R = 2.
c) d) Tọa độ giao điểm của d và mặt cầu (S) là nghiệm của hệ
\(\left\{ \begin{array}{l}{\left( {x - 1} \right)^2} + {y^2} + {z^2} = 4\\x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {3 + t} \right)^2} + {\left( { - 1 - t} \right)^2} + {0^2} = 4\\x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}2{t^2} + 8t + 6 = 0\\x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}t = - 1\\t = - 3\end{array} \right.\\x = 4 + t\\y = - 1 - t\\z = 0\end{array} \right.\).
Với t = −1 thì \(\left\{ \begin{array}{l}x = 3\\y = 0\\z = 0\end{array} \right.\) \( \Rightarrow A\left( {3;0;0} \right)\).
Với t = −3 thì \(\left\{ \begin{array}{l}x = 1\\y = 2\\z = 0\end{array} \right.\) \( \Rightarrow B\left( {1;2;0} \right)\).
Đáp án: a) Sai; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.