Trong không gian với hệ trục tọa độ \(Oxyz\), cho hai mặt phẳng \(\left( P \right):x - 2y + 2z - 1 = 0\) và \(\left( Q \right):2x + 2y - z - 3 = 0\). Gọi \(\alpha \) là góc giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\). Giá trị\[\cos \alpha \] bằng.
Quảng cáo
Trả lời:
Chọn C
Ta có \(\overrightarrow {{n_1}} = \left( {1; - 2;2} \right),\overrightarrow {{n_2}} = \left( {2;2; - 1} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Khi đó \(\cos \alpha = \frac{{\left| {1.2 + \left( { - 2} \right).2 + 2.\left( { - 1} \right)} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2} + {2^2}} .\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{9}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Khi đó \(\sin \gamma = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma \approx 11^\circ \).
Trả lời: 11.
Lời giải
a) \(M\left( {1;0;0} \right)\).
b) \(N\left( {0;0;1} \right)\).
c) Mặt phẳng (DMN) có phương trình là \(\frac{x}{1} + \frac{y}{2} + \frac{z}{1} = 1 \Leftrightarrow 2x + y + 2z - 2 = 0\).
d) Ta có \(C'\left( {2;2;2} \right)\).
Khi đó \(d\left( {C',\left( {DMN} \right)} \right) = \frac{{\left| {2.2 + 2 + 2.2 - 2} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{8}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
