Trong không gian Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí A(0; 10; 0) với vận tốc \(\overrightarrow v = \left( {150;150;40} \right)\). Biết góc nâng của máy bay là \(\gamma = a^\circ \)(góc giữa hướng chuyển động bay lên của máy bay với đường băng và làm tròn kết quả đến hàng độ). Khi đó giá trị của a bằng bao nhiêu?
Trong không gian Oxyz, với mặt phẳng (Oxy) là mặt đất, một máy bay cất cánh từ vị trí A(0; 10; 0) với vận tốc \(\overrightarrow v = \left( {150;150;40} \right)\). Biết góc nâng của máy bay là \(\gamma = a^\circ \)(góc giữa hướng chuyển động bay lên của máy bay với đường băng và làm tròn kết quả đến hàng độ). Khi đó giá trị của a bằng bao nhiêu?
Quảng cáo
Trả lời:

Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Khi đó \(\sin \gamma = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma \approx 11^\circ \).
Trả lời: 11.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) \(M\left( {1;0;0} \right)\).
b) \(N\left( {0;0;1} \right)\).
c) Mặt phẳng (DMN) có phương trình là \(\frac{x}{1} + \frac{y}{2} + \frac{z}{1} = 1 \Leftrightarrow 2x + y + 2z - 2 = 0\).
d) Ta có \(C'\left( {2;2;2} \right)\).
Khi đó \(d\left( {C',\left( {DMN} \right)} \right) = \frac{{\left| {2.2 + 2 + 2.2 - 2} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{8}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Câu 2
Trong không gian Oxyz, cho hai mặt phẳng \((P):y = 0,\;\;(Q):\sqrt 3 x - y - 2024 = 0.\) Xét các vectơ \({\vec n_1} = (0;\;1;\;0),\;\;{\vec n_2} = (\sqrt 3 ;\; - 1;\;0).\)
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) không là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \({\vec n_1}.{\vec n_2} = - 1.\)
d) Mặt phẳng \((R)\)đi qua điểm \(M(1;1;1)\) và vuông góc \((P),(Q)\)có phương trình là\(\sqrt 3 x + y - z - \sqrt 3 = 0.\)
Trong không gian Oxyz, cho hai mặt phẳng \((P):y = 0,\;\;(Q):\sqrt 3 x - y - 2024 = 0.\) Xét các vectơ \({\vec n_1} = (0;\;1;\;0),\;\;{\vec n_2} = (\sqrt 3 ;\; - 1;\;0).\)
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) không là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \({\vec n_1}.{\vec n_2} = - 1.\)
d) Mặt phẳng \((R)\)đi qua điểm \(M(1;1;1)\) và vuông góc \((P),(Q)\)có phương trình là\(\sqrt 3 x + y - z - \sqrt 3 = 0.\)
Lời giải
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0.\sqrt 3 + 1.\left( { - 1} \right) + 0.0 = - 1\).
d) Có \(\overrightarrow n = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {0;0; - \sqrt 3 } \right)\) là một vectơ pháp tuyến của mặt phẳng (R).
Phương trình mặt phẳng (R) là \( - \sqrt 3 \left( {z - 1} \right) = 0\)hay \(z - 1 = 0\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.