Trong không gian Oxyz, cho hai mặt phẳng \((P):y = 0,\;\;(Q):\sqrt 3 x - y - 2024 = 0.\) Xét các vectơ \({\vec n_1} = (0;\;1;\;0),\;\;{\vec n_2} = (\sqrt 3 ;\; - 1;\;0).\)
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) không là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \({\vec n_1}.{\vec n_2} = - 1.\)
d) Mặt phẳng \((R)\)đi qua điểm \(M(1;1;1)\) và vuông góc \((P),(Q)\)có phương trình là\(\sqrt 3 x + y - z - \sqrt 3 = 0.\)
Trong không gian Oxyz, cho hai mặt phẳng \((P):y = 0,\;\;(Q):\sqrt 3 x - y - 2024 = 0.\) Xét các vectơ \({\vec n_1} = (0;\;1;\;0),\;\;{\vec n_2} = (\sqrt 3 ;\; - 1;\;0).\)
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) không là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \({\vec n_1}.{\vec n_2} = - 1.\)
d) Mặt phẳng \((R)\)đi qua điểm \(M(1;1;1)\) và vuông góc \((P),(Q)\)có phương trình là\(\sqrt 3 x + y - z - \sqrt 3 = 0.\)
Quảng cáo
Trả lời:
a) \({\vec n_1}\) là một vectơ pháp tuyến của mặt phẳng \((P).\)
b) \({\vec n_2}\) là vectơ pháp tuyến của mặt phẳng \((Q).\)
c) \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 0.\sqrt 3 + 1.\left( { - 1} \right) + 0.0 = - 1\).
d) Có \(\overrightarrow n = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right] = \left( {0;0; - \sqrt 3 } \right)\) là một vectơ pháp tuyến của mặt phẳng (R).
Phương trình mặt phẳng (R) là \( - \sqrt 3 \left( {z - 1} \right) = 0\)hay \(z - 1 = 0\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Sai.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
M chính là giao điểm của đường thẳng AB và mặt phẳng (Oxy).
Ta có \(\overrightarrow {AB} = \left( {5;10; - 2} \right)\).
Đường thẳng AB đi qua điểm A(5; 0; 5) và nhận \(\overrightarrow {AB} = \left( {5;10; - 2} \right)\)làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 5 + 5t\\y = 10t\\z = 5 - 2t\end{array} \right.\).
Vì M Î (Oxy) Þ z = 0 Þ 5 – 2t = 0 \( \Leftrightarrow t = \frac{5}{2}\).
Với \(t = \frac{5}{2}\) thì \(\left\{ \begin{array}{l}x = \frac{{35}}{2}\\y = 25\\z = 0\end{array} \right.\) \( \Rightarrow M\left( {\frac{{35}}{2};25;0} \right)\).
Suy ra \(a = \frac{{35}}{2};b = 25\). Do đó \(a + b = \frac{{35}}{2} + 25 = 42,5\).
Trả lời: 42,5.
Lời giải
Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Khi đó \(\sin \gamma = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma \approx 11^\circ \).
Trả lời: 11.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
