Cho góc \(\alpha \) thỏa mãn \(\pi < \alpha < \frac{{3\pi }}{2}\) và \(\sin \alpha - 2\cos \alpha = 1\). Tính \(P = 2\tan \alpha - \cot \alpha .\)
Quảng cáo
Trả lời:
Với \(\pi < \alpha < \frac{{3\pi }}{2}\) suy ra \(\left\{ \begin{array}{l}\sin \alpha < 0\\\cos \alpha < 0\end{array} \right.\).
Ta có \(\left\{ \begin{array}{l}\sin \alpha - 2\cos \alpha = 1\\{\sin ^2}\alpha + {\cos ^2}\alpha = 1\end{array} \right. \Rightarrow {\left( {1 + 2\cos \alpha } \right)^2} + {\cos ^2}\alpha = 1\)\( \Leftrightarrow 5{\cos ^2}\alpha + 4\cos \alpha = 0 \Leftrightarrow \left[ \begin{array}{l}\cos \alpha = 0{\rm{ }}\,\left( {{\rm{loai}}} \right)\\\cos \alpha = - \frac{4}{5}\end{array} \right.\).
Từ hệ thức \({\sin ^2}\alpha + {\cos ^2}\alpha = 1\), suy ra \(\sin \alpha = - \frac{3}{5}\) (do \(\sin \alpha < 0\))
và \[\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{4}{3}.\]
Thay \[\tan \alpha = \frac{3}{4}\] và \[\cot \alpha = \frac{4}{3}\]vào \(P\), ta được \[P = \frac{1}{6}.\] Chọn C.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi E và F lần lượt là trung điểm AB và CD.
Ta có \(I = BM \cap CN\)\( \Rightarrow \left\{ \begin{array}{l}I \in BM \subset \left( {SAB} \right)\\I \in CN \subset \left( {SCD} \right)\end{array} \right. \Rightarrow I \in \left( {SAB} \right) \cap \left( {SCD} \right).\)
Mà \(S \in \left( {SAB} \right) \cap \left( {SCD} \right)\). Do đó \(\left( {SAB} \right) \cap \left( {SCD} \right) = SI.\)
Ta có: \(\left. \begin{array}{l}AB{\rm{//}}CD\\AB \subset \left( {SAB} \right)\\CD \subset \left( {SCD} \right)\\\left( {SAB} \right) \cap \left( {SCD} \right) = SI\end{array} \right\} \Rightarrow SI\,{\rm{//}}\,AB\,{\rm{//}}\,CD\).
Vì \(SI{\rm{//}}CD\) nên \(SI\,{\rm{//}}\,CF\).
Theo định lý Thalès ta có: \(\frac{{SI}}{{CF}} = \frac{{SN}}{{NF}} = 2\) (do \(N\) là trọng tâm tam giác \(SCD\)).
Suy ra \(SI = 2CF = CD\) (do F lần lượt là trung điểm của CD). Vậy \(\frac{{SI}}{{CD}} = 1\).
Đáp án: 1.
Lời giải
Hàm số có tập xác định \(D = \mathbb{R}\).
Ta có \(y = 5 + 4\sin 2x\cos 2x = 5 + 2\sin 4x\).
Do \( - 1 \le \sin 4x \le 1 \Leftrightarrow - 2 \le 2\sin 4x \le 2 \Leftrightarrow 3 \le 5 + 2\sin 4x \le 7 \Leftrightarrow 3 \le y \le 7\).
Suy ra tập giá trị của hàm số là \(T = \left[ {3\,;7} \right]\).
Vậy \(a + b = 3 + 7 = 10\).
Đáp án: 10.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.