Câu hỏi:

20/10/2025 22 Lưu

Cho mệnh đề đúng.

A. Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên một khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại một điểm của khoảng đó.    
B. Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên một khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại mọi điểm của khoảng đó.    
C. Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên một khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại ba điểm của khoảng đó.    
D. Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên một khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại hai điểm của khoảng đó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hàm số \(y = f\left( x \right)\) được gọi là liên tục trên một khoảng \(\left( {a;b} \right)\) nếu nó liên tục tại mọi điểm của khoảng đó. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) \(f\left( {\frac{\pi }{3}} \right) = \tan \left( {3.\frac{\pi }{3}} \right) = \tan \pi = 0\).

b) Ta có \(f\left( { - x} \right) = \tan \left( { - 3x} \right) = - \tan 3x = - f\left( x \right)\). Do đó hàm số \(f\left( x \right)\) là hàm số lẻ.

c) Điều kiện: \(\cos 3x \ne 0\)\( \Leftrightarrow 3x \ne \frac{\pi }{2} + k\pi \)\( \Leftrightarrow x \ne \frac{\pi }{6} + k\frac{\pi }{3},k \in \mathbb{Z}\).

Do đó \(D = \mathbb{R}\backslash \left\{ {\frac{\pi }{6} + k\frac{\pi }{3},k \in \mathbb{Z}} \right\}\).

d) Có \(\tan 3x = 1\)\( \Leftrightarrow 3x = \frac{\pi }{4} + k\pi \)\( \Leftrightarrow x = \frac{\pi }{{12}} + k\frac{\pi }{3},k \in \mathbb{Z}\).

\(0 < x < \pi \) nên \(0 < \frac{\pi }{{12}} + k\frac{\pi }{3} < \pi \)\( \Leftrightarrow - \frac{1}{4} < k < \frac{{11}}{4}\).

\(k \in \mathbb{Z}\) nên \(k = 0;k = 1;k = 2\).

Từ đó ta có \(x = \frac{\pi }{{12}};x = \frac{{5\pi }}{{12}};x = \frac{{3\pi }}{4}\).

Do đó tổng các nghiệm là \(\frac{\pi }{{12}} + \frac{{5\pi }}{{12}} + \frac{{3\pi }}{4} = \frac{{5\pi }}{4}\).

Đáp án: a) Đúng;   b) Đúng;   c) Sai;   d) Đúng.

Lời giải

\(a,b\) là hai góc nhọn nên \(\cos a > 0;\cos b > 0\).

\(\sin a = \frac{1}{3} \Rightarrow \cos a = \frac{{2\sqrt 2 }}{3}\); \(\sin b = \frac{1}{2} \Rightarrow \cos b = \frac{{\sqrt 3 }}{2}\).

\(\cos 2\left( {a + b} \right) = \cos \left( {2a + 2b} \right)\)\( = \cos 2a\cos 2b - \sin 2a\sin 2b\)

\( = \left( {2{{\cos }^2}a - 1} \right)\left( {2{{\cos }^2}b - 1} \right) - 4\sin a\cos a\sin b\cos b\)

\( = \left( {2.\frac{8}{9} - 1} \right)\left( {2.\frac{3}{4} - 1} \right) - 4.\frac{1}{3}.\frac{{2\sqrt 2 }}{3}.\frac{1}{2}.\frac{{\sqrt 3 }}{2}\)

\( = \frac{7}{{18}} - \frac{{2\sqrt 6 }}{9}\)\( = \frac{{7 - 4\sqrt 6 }}{{18}}\). Suy ra \(m = 4;n = 18\). Do đó \(m + 2n = 4 + 2.18 = 40\).

Trả lời: 40.

Câu 3

A. \({u_n} = 2n + 1\).     

B. \({u_n} = {n^2}\).  
C. \({u_n} = \frac{7}{{3n}}\).                                                  
D. \({u_n} = {3^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. Song song.              
B. Chéo nhau.              
C. Cắt nhau.                                                                    
D. Trùng nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(5\).                        
B. \(4\).                        
C. \(3\).                                                                     
D. \(2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP