Câu hỏi:

19/10/2025 10 Lưu

Tập xác định của hàm số \[y = \frac{{2025}}{{\sin x}}\]

A. \[D = \mathbb{R}.\]                                           
B. \[D = \mathbb{R}\backslash \left\{ 0 \right\}.\]
C. \[D = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k\pi ,{\rm{ }}k \in \mathbb{Z}} \right\}.\]          
D. \[D = \mathbb{R}\backslash \left\{ {k\pi ,{\rm{ }}k \in \mathbb{Z}} \right\}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Điều kiện xác định: \[\sin x \ne 0\] \[ \Leftrightarrow x \ne k\pi {\rm{ }}\left( {k \in \mathbb{Z}} \right).\]

Do đó, \[D = \mathbb{R}\backslash \left\{ {k\pi ,{\rm{ }}k \in \mathbb{Z}} \right\}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: 14

Ta có: \[ - 1 \le \cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) \le 1\] \[ \Leftrightarrow 9 \le 3\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) + 12 \le 15\].

Mực nước của con kênh cao nhất khi độ sâu của mực nước trong kênh lớn nhất.

Do đó mực nước của con kênh cao nhất bằng \[15{\rm{ }}\left( m \right)\] khi

\[\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) = 1\]\[ \Leftrightarrow t = - 2 + 16k\], \[k \in \mathbb{Z}\].

Vì trong một ngày có 24 giờ nên \[0 \le - 2 + 16k \le 24 \Leftrightarrow \frac{1}{8} \le k \le \frac{{26}}{{16}}\].

\[k \in \mathbb{Z}\] nên \[k = 1\]\[ \Rightarrow t = 14\]giờ.

Vậy mực nước của con kênh cao nhất khi \[t\] bằng \[14\] giờ.

Lời giải

a) Đ

b) Đ

c) Đ

d) S

 

Cho tứ diện \[ABCD\]. Gọi \[I,J\] lần l (ảnh 1)

a) Ta có: \[I \in AD,\]\[AD \subset \left( {JAD} \right)\]\[ \Rightarrow I \in \left( {JAD} \right)\] \[ \Rightarrow IJ \subset \left( {JAD} \right);\]

               \[J \in BC,\] \[BC \subset \left( {IBC} \right)\] \[ \Rightarrow J \in \left( {IBC} \right)\]\[ \Rightarrow IJ \subset \left( {IBC} \right)\].

Vậy \[IJ = \left( {IBC} \right) \cap \left( {JAD} \right).\]

b) Ta có: \[\left\{ \begin{array}{l}N \in \left( {NMD} \right) \cap \left( {ADC} \right)\\D \in \left( {NMD} \right) \cap \left( {ADC} \right)\end{array} \right.\] \[ \Rightarrow ND = \left( {NMD} \right) \cap \left( {ADC} \right).\]

Vậy \[ND\] là giao tuyến của hai mặt phẳng \[\left( {NMD} \right),\left( {ADC} \right).\]

c) Ta có: \[\left\{ \begin{array}{l}B \in \left( {BIC} \right) \cap \left( {ADB} \right)\\I \in \left( {BIC} \right) \cap \left( {ADB} \right)\end{array} \right.\].

Vậy \[BI\] là giao tuyến của hai mặt phẳng \[\left( {BIC} \right),\left( {ABD} \right).\]

d) Gọi \[E = DN \cap CI\] nằm trong mặt phẳng \[\left( {ACD} \right)\]\[F = DM \cap BI\] nằm trong mặt phẳng \[\left( {ABD} \right)\].

Ta có: \[\left\{ \begin{array}{l}E \in DN,{\rm{ }}DN \subset \left( {DMN} \right)\\E \in IC,{\rm{ }}IC \subset \left( {BCI} \right)\end{array} \right.\] \[ \Rightarrow E \in \left( {DMN} \right) \cap \left( {IBC} \right)\] (1).

Tương tự: \[\left\{ \begin{array}{l}F \in DM,{\rm{ }}DM \subset \left( {DMN} \right)\\F \in IB,{\rm{ }}IB \subset \left( {BCI} \right)\end{array} \right.\] \[ \Rightarrow F \in \left( {DMN} \right) \cap \left( {IBC} \right)\] (2).

Từ (1) và (2) suy ra \[EF = \left( {DMN} \right) \cap \left( {IBC} \right)\]. Ta có \[EF\] cắt \[IJ.\]

Câu 7

A. \[{S_4} = 9.\]      
B. \[{S_4} = 12.\]            
C. \[{S_4} = 22.\]                                
D. \[{S_4} = 14.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP