Câu hỏi:

19/10/2025 79 Lưu

Cho tứ diện \(ABCD\). Trên cạnh \(AC,AD\) lấy lần lượt các điểm \(M,N\) sao cho \(AM = \frac{1}{3}AC\), \(AN = 2ND\). Gọi \(I\) là giao điểm của đường thẳng \(MN\) và mặt phẳng \(\left( {BCD} \right)\). Biết tỉ số \(\frac{{ID}}{{IC}} = \frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Giá trị \(a + 2b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \(AC,AD\) l (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6933

Đặt \({u_1}\) là giá của mét khoan đầu tiên thì \[{u_1} = 60\,000\] đồng.

Kể từ mét khoan thứ hai, giá của mỗi mét khoan sau tăng thêm \(2,5\% \) so với giá của mét khoan ngay trước đó.

Suy ra \({u_2} = {u_1} + {u_1}.2,5\% = {u_1}(1 + 0,025) = 1,025{u_1}\).

Tương tự

    \({u_3} = {u_2} + {u_2}.2,5\% = {u_2}(1 + 0,025) = 1,025{u_2}\).

    …………………………………………….

Vậy các giá trị \({u_1},\,{u_2},...,\,{u_{55}}\) lập thành một cấp số nhân có số hạng đầu \({u_1} = 60\,000\) và công bội

\(q = 1,025\).

Gọi \(T\) là tổng số tiền mà chủ nhà phải thanh toán khi khoan \(55\left( {\rm{m}} \right)\) giếng, ta có:

\(T = {S_{55}} = {u_1} + {u_2} + ... + {u_{55}} = 60{\rm{ }}000.\frac{{{{\left( {1,025} \right)}^{55}} - 1}}{{1,025 - 1}} \approx 6933055\) (đồng)\( \approx 6933\)nghìn đồng.

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy là (ảnh 1)

a) Ta có \(OM\not \subset \left( {SAB} \right)\)\(OM//SA \subset \left( {SAB} \right)\). Vậy \(OM//\left( {SAB} \right)\).

b) Ta có \(\left( {SAC} \right)\)\(\left( {SBD} \right)\) có S chung.

Lại có \(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right) \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).

Vậy \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).

c) Trong mặt phẳng \(\left( {SAC} \right)\): \(\left\{ I \right\} = AM \cap SO\)\(SO \subset \left( {SBD} \right)\).

Vậy \(AM \cap \left( {SBD} \right) = \left\{ I \right\}\).

d) Xét \(\Delta SAC\)\(AM,SO\) là hai đường trung tuyến nên \(I\) là trọng tâm \(\Delta SAC\).

Suy ra theo tính chất trọng tâm ta có \(AI = 2IM\).

Câu 4

A. 1.                         
B. \(0\).                    
C. 2.                                     
D. 4.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. Dãy số \(\left( {{u_n}} \right)\)tăng.    
B. Dãy số \(\left( {{u_n}} \right)\) giảm.    
C. Dãy số \(\left( {{u_n}} \right)\)không tăng, không giảm.                                                                     
D. Dãy số \(\left( {{u_n}} \right)\)không đổi.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP