Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 3n - 1\).
a) Dãy số \(\left( {{u_n}} \right)\) là một dãy số giảm.
b) Dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng với \({u_1} = 2\) và \(d = 3\).
c) Số \(179\) là số hạng thứ 60 của dãy số \(\left( {{u_n}} \right)\).
d) Biết \({S_n} = 5430\). Khi đó \(n = 59\).
Cho dãy số \(\left( {{u_n}} \right)\) với \({u_n} = 3n - 1\).
a) Dãy số \(\left( {{u_n}} \right)\) là một dãy số giảm.
b) Dãy số \(\left( {{u_n}} \right)\) là một cấp số cộng với \({u_1} = 2\) và \(d = 3\).
c) Số \(179\) là số hạng thứ 60 của dãy số \(\left( {{u_n}} \right)\).
d) Biết \({S_n} = 5430\). Khi đó \(n = 59\).
Quảng cáo
Trả lời:
a) S, b) Đ, c) Đ, d) S
a) Ta có \({u_n} = 3n - 1\) và \({u_{n + 1}} = 3\left( {n + 1} \right) - 1 = 3n + 2\).
Suy ra \({u_{n + 1}} - {u_n} = \left( {3n + 2} \right) - \left( {3n - 1} \right) = 3 > 0\).
Suy ra \(\left( {{u_n}} \right)\) là dãy số tăng.
b) Có \({u_{n + 1}} - {u_n} = 3\).
Vậy \(\left( {{u_n}} \right)\) là một cấp số cộng với \({u_1} = 2\) và \(d = 3\).
c) Có \({u_n} = 179 \Leftrightarrow 3n - 1 = 179 \Leftrightarrow n = 60\).
d) Ta có \({S_n} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right].n}}{2}\)\( \Leftrightarrow 5430 = \frac{{\left[ {4 + \left( {n - 1} \right).3} \right].n}}{2}\)\( \Leftrightarrow 3{n^2} + n - 10860 = 0\)\( \Leftrightarrow n = 60\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đ, b) S, c) Đ, d) S
a) Ta có \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 3 = 0 \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{6}} \right)\).
b) Ta có \(2\cos \left( {x + \frac{\pi }{4}} \right) - \sqrt 3 = 0 \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \cos \left( {x + \frac{\pi }{4}} \right) = \cos \left( {\frac{\pi }{6}} \right)\)
\( \Leftrightarrow x + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\) hoặc \(x + \frac{\pi }{4} = - \frac{\pi }{6} + k2\pi ,k \in \mathbb{Z}\)
\( \Leftrightarrow x = - \frac{\pi }{{12}} + k2\pi ,k \in \mathbb{Z}\) hoặc \[x = - \frac{{5\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\].
c)
- Với \(x = - \frac{\pi }{{12}} + k2\pi ,k \in \mathbb{Z}\)
Vì \(x \in \left( { - \pi ;\pi } \right)\) nên \( - \pi < - \frac{\pi }{{12}} + k2\pi < \pi \Leftrightarrow - \frac{{11\pi }}{{12}} < k2\pi < \frac{{13\pi }}{{12}} \Leftrightarrow - \frac{{11}}{{24}} < k < \frac{{13}}{{24}}\)
Do \(k \in \mathbb{Z}\) nên \(k = 0\). Suy ra \({x_1} = - \frac{\pi }{{12}}\)
- Với \[x = - \frac{{5\pi }}{{12}} + k2\pi ,k \in \mathbb{Z}\]
Vì \(x \in \left( { - \pi ;\pi } \right)\) nên \( - \pi < - \frac{{5\pi }}{{12}} + k2\pi < \pi \Leftrightarrow - \frac{{7\pi }}{{12}} < k2\pi < \frac{{17\pi }}{{12}} \Leftrightarrow - \frac{7}{{24}} < k < \frac{{17}}{{24}}\)
Do \(k \in \mathbb{Z}\) nên \(k = 0\). Suy ra \({x_2} = - \frac{{5\pi }}{{12}}\).
d) Ta có \(S = {x_1} + {x_2} = - \frac{{5\pi }}{{12}} - \frac{\pi }{{12}} = - \frac{\pi }{2}\).
Câu 2
Lời giải
Đáp án đúng là: C

+) Vì \(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right)\end{array} \right.\) nên \(O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).
Lại có \(S \in \left( {SAC} \right) \cap \left( {SBD} \right)\) nên \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).
+) Do \(ABCD\) là hình bình hành nên \(AB//CD\) và \(AD//BC\).
Vì \(\left\{ \begin{array}{l}S \in \left( {SAB} \right) \cap \left( {SCD} \right)\\AB//CD//Sx\end{array} \right.\) nên \(Sx = \left( {SAB} \right) \cap \left( {SCD} \right)\).
Vì \(\left\{ \begin{array}{l}S \in \left( {SAD} \right) \cap \left( {SBC} \right)\\AD//BC//Sy\end{array} \right.\) nên \(Sy = \left( {SAD} \right) \cap \left( {SBC} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.