Cho hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) và có đồ thị là đường cong trong hình dưới đây.
Cực tiểu của hàm số \(y = f\left( x \right)\) bằng
\( - 2\).
\( - 1\).
\(2\).
\(3\).
Quảng cáo
Trả lời:

Cực tiểu của hàm số bằng \( - 2\). Chọn A.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Câu 2
\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).
\(\left( {4;1; - 1} \right)\).
\[\left( {2;1; - 1} \right)\].
\(\left( {2; - 1; - 1} \right)\).
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1;0; - 1} \right) \Rightarrow A{B^2} = 2\); \(\overrightarrow {AC} = \left( {x - 3;y - 1; - 1} \right) \Rightarrow AC = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2} + 1} \).
Tam giác \(ABC\) vuông cân tại \(A\) nên \(\left\{ \begin{array}{l}\overrightarrow {AB} \bot \overrightarrow {AC} \\AB = AC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {x - 3} \right) + 0\left( {y - 1} \right) + 1 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\{x^2} + {y^2} - 6x - 2y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right.\).
Vậy \(C\left( {4;1; - 1} \right)\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\overrightarrow {AD'} \).
\(\overrightarrow {AB'} \).
\(\overrightarrow {AC'} \).
\(\overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
\(10\).
\(12\).
\(2\).
\(20\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.