Cho hàm số đa thức bậc bốn \(y = f\left( x \right)\) có đồ thị như hình vẽ
(a) \(f\left( x \right)\) đồng biến trên khoảng \(\left( { - 3;2} \right)\).
(b) Hàm số \(y = f\left( {x + 2} \right)\) đồng biến trên khoảng \(\left( { - 1; + \infty } \right)\).
(c) \(f\left( x \right)\) có hai điểm cực trị.
(d) Giá trị lớn nhất của \(f\left( x \right)\) trên đoạn \(\left[ { - 1;1} \right]\) bằng 2.
Quảng cáo
Trả lời:

a) Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).
b) Có \(y' = f'\left( {x + 2} \right)\).
Hàm số đồng biến khi \(f'\left( {x + 2} \right) > 0\) \( \Leftrightarrow \left[ \begin{array}{l} - 1 < x + 2 < 0\\x + 2 > 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - 3 < x < - 2\\x > - 1\end{array} \right.\).
Do đó hàm số \(y = f\left( {x + 2} \right)\) đồng biến trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 1; + \infty } \right)\).
c) \(f\left( x \right)\) có 3 điểm cực trị.
d) \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = 2\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Câu 2
\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).
\(\left( {4;1; - 1} \right)\).
\[\left( {2;1; - 1} \right)\].
\(\left( {2; - 1; - 1} \right)\).
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1;0; - 1} \right) \Rightarrow A{B^2} = 2\); \(\overrightarrow {AC} = \left( {x - 3;y - 1; - 1} \right) \Rightarrow AC = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2} + 1} \).
Tam giác \(ABC\) vuông cân tại \(A\) nên \(\left\{ \begin{array}{l}\overrightarrow {AB} \bot \overrightarrow {AC} \\AB = AC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {x - 3} \right) + 0\left( {y - 1} \right) + 1 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\{x^2} + {y^2} - 6x - 2y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right.\).
Vậy \(C\left( {4;1; - 1} \right)\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\overrightarrow {AD'} \).
\(\overrightarrow {AB'} \).
\(\overrightarrow {AC'} \).
\(\overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(10\).
\(12\).
\(2\).
\(20\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.